Courants algébriques et courants de Liouville
Annales Polonici Mathematici, Tome 86 (2005) no. 3, pp. 245-271
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define in $\mathbb C^n$ the concepts of algebraic currents
and Liouville currents, thus extending the concepts of algebraic
complex subsets and Liouville subsets.
After having shown that every algebraic current is Liouville, we
characterize those
positive closed currents on $\mathbb C^n$ which are algebraic.
Let $T$ be a closed positive current on $\mathbb C^n$. We give sufficient
conditions, relating to the growth of the projective mass of $T$,
so that $T$ is Liouville. These results generalize
those previously obtained by N. Sibony and P. M. Wong, and
K. Takegoshi in the geometrical case, i.e. when $T=[X]$
is the current of integration on an analytical complex subset of
$\mathbb C^n$.
Mots-clés :
define mathbb concepts algebraic currents liouville currents extending concepts algebraic complex subsets liouville subsets after having shown every algebraic current liouville characterize those positive closed currents mathbb which algebraic closed positive current mathbb sufficient conditions relating growth projective mass liouville these results generalize those previously obtained sibony wong takegoshi geometrical current integration analytical complex subset mathbb
Affiliations des auteurs :
M. Blel 1 ; S. K. Mimouni 1 ; G. Raby 2
@article{10_4064_ap86_3_4,
author = {M. Blel and S. K. Mimouni and G. Raby},
title = {Courants alg\'ebriques et courants de {Liouville}},
journal = {Annales Polonici Mathematici},
pages = {245--271},
publisher = {mathdoc},
volume = {86},
number = {3},
year = {2005},
doi = {10.4064/ap86-3-4},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-4/}
}
TY - JOUR AU - M. Blel AU - S. K. Mimouni AU - G. Raby TI - Courants algébriques et courants de Liouville JO - Annales Polonici Mathematici PY - 2005 SP - 245 EP - 271 VL - 86 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-4/ DO - 10.4064/ap86-3-4 LA - fr ID - 10_4064_ap86_3_4 ER -
M. Blel; S. K. Mimouni; G. Raby. Courants algébriques et courants de Liouville. Annales Polonici Mathematici, Tome 86 (2005) no. 3, pp. 245-271. doi: 10.4064/ap86-3-4
Cité par Sources :