Courants algébriques et courants de Liouville
Annales Polonici Mathematici, Tome 86 (2005) no. 3, pp. 245-271.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define in $\mathbb C^n$ the concepts of algebraic currents and Liouville currents, thus extending the concepts of algebraic complex subsets and Liouville subsets. After having shown that every algebraic current is Liouville, we characterize those positive closed currents on $\mathbb C^n$ which are algebraic. Let $T$ be a closed positive current on $\mathbb C^n$. We give sufficient conditions, relating to the growth of the projective mass of $T$, so that $T$ is Liouville. These results generalize those previously obtained by N. Sibony and P. M. Wong, and K. Takegoshi in the geometrical case, i.e. when $T=[X]$ is the current of integration on an analytical complex subset of $\mathbb C^n$.
DOI : 10.4064/ap86-3-4
Mots-clés : define mathbb concepts algebraic currents liouville currents extending concepts algebraic complex subsets liouville subsets after having shown every algebraic current liouville characterize those positive closed currents mathbb which algebraic closed positive current mathbb sufficient conditions relating growth projective mass liouville these results generalize those previously obtained sibony wong takegoshi geometrical current integration analytical complex subset mathbb

M. Blel 1 ; S. K. Mimouni 1 ; G. Raby 2

1 Faculté des Sciences de Monastir Département de mathématiques 5019 Monastir, Tunisie
2 UMR CNRS 6086 Groupes de Lie et Géométrie Mathématiques Université de Poitiers Téléport2-BP 30179 86962 Futuroscope Chasseneuil, France
@article{10_4064_ap86_3_4,
     author = {M. Blel and S. K. Mimouni and G. Raby},
     title = {Courants alg\'ebriques et  courants de {Liouville}},
     journal = {Annales Polonici Mathematici},
     pages = {245--271},
     publisher = {mathdoc},
     volume = {86},
     number = {3},
     year = {2005},
     doi = {10.4064/ap86-3-4},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-4/}
}
TY  - JOUR
AU  - M. Blel
AU  - S. K. Mimouni
AU  - G. Raby
TI  - Courants algébriques et  courants de Liouville
JO  - Annales Polonici Mathematici
PY  - 2005
SP  - 245
EP  - 271
VL  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-4/
DO  - 10.4064/ap86-3-4
LA  - fr
ID  - 10_4064_ap86_3_4
ER  - 
%0 Journal Article
%A M. Blel
%A S. K. Mimouni
%A G. Raby
%T Courants algébriques et  courants de Liouville
%J Annales Polonici Mathematici
%D 2005
%P 245-271
%V 86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-4/
%R 10.4064/ap86-3-4
%G fr
%F 10_4064_ap86_3_4
M. Blel; S. K. Mimouni; G. Raby. Courants algébriques et  courants de Liouville. Annales Polonici Mathematici, Tome 86 (2005) no. 3, pp. 245-271. doi : 10.4064/ap86-3-4. http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-4/

Cité par Sources :