1Faculté des Sciences de Monastir Département de mathématiques 5019 Monastir, Tunisie 2UMR CNRS 6086 Groupes de Lie et Géométrie Mathématiques Université de Poitiers Téléport2-BP 30179 86962 Futuroscope Chasseneuil, France
Annales Polonici Mathematici, Tome 86 (2005) no. 3, pp. 245-271
We define in $\mathbb C^n$ the concepts of algebraic currents
and Liouville currents, thus extending the concepts of algebraic
complex subsets and Liouville subsets.
After having shown that every algebraic current is Liouville, we
characterize those
positive closed currents on $\mathbb C^n$ which are algebraic.
Let $T$ be a closed positive current on $\mathbb C^n$. We give sufficient
conditions, relating to the growth of the projective mass of $T$,
so that $T$ is Liouville. These results generalize
those previously obtained by N. Sibony and P. M. Wong, and
K. Takegoshi in the geometrical case, i.e. when $T=[X]$
is the current of integration on an analytical complex subset of
$\mathbb C^n$.
Mots-clés :
define mathbb concepts algebraic currents liouville currents extending concepts algebraic complex subsets liouville subsets after having shown every algebraic current liouville characterize those positive closed currents mathbb which algebraic closed positive current mathbb sufficient conditions relating growth projective mass liouville these results generalize those previously obtained sibony wong takegoshi geometrical current integration analytical complex subset mathbb
Affiliations des auteurs :
M. Blel 
1
;
S. K. Mimouni 
1
;
G. Raby 
2
1
Faculté des Sciences de Monastir Département de mathématiques 5019 Monastir, Tunisie
2
UMR CNRS 6086 Groupes de Lie et Géométrie Mathématiques Université de Poitiers Téléport2-BP 30179 86962 Futuroscope Chasseneuil, France
@article{10_4064_ap86_3_4,
author = {M. Blel and S. K. Mimouni and G. Raby},
title = {Courants alg\'ebriques et courants de {Liouville}},
journal = {Annales Polonici Mathematici},
pages = {245--271},
year = {2005},
volume = {86},
number = {3},
doi = {10.4064/ap86-3-4},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-4/}
}
TY - JOUR
AU - M. Blel
AU - S. K. Mimouni
AU - G. Raby
TI - Courants algébriques et courants de Liouville
JO - Annales Polonici Mathematici
PY - 2005
SP - 245
EP - 271
VL - 86
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-4/
DO - 10.4064/ap86-3-4
LA - fr
ID - 10_4064_ap86_3_4
ER -
%0 Journal Article
%A M. Blel
%A S. K. Mimouni
%A G. Raby
%T Courants algébriques et courants de Liouville
%J Annales Polonici Mathematici
%D 2005
%P 245-271
%V 86
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-4/
%R 10.4064/ap86-3-4
%G fr
%F 10_4064_ap86_3_4
M. Blel; S. K. Mimouni; G. Raby. Courants algébriques et courants de Liouville. Annales Polonici Mathematici, Tome 86 (2005) no. 3, pp. 245-271. doi: 10.4064/ap86-3-4