Continuity of the relative extremal function on analytic
varieties in $\Bbb{C}^n$
Annales Polonici Mathematici, Tome 86 (2005) no. 3, pp. 219-225
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $V$ be an analytic variety in a domain
$\mit\Omega \subset \Bbb {C}^n$ and
let $K \subset\!\subset V$ be a closed subset.
By studying Jensen measures
for certain classes of plurisubharmonic functions on $V$, we prove
that the relative extremal function $\omega_K$ is continuous on $V$
if $\mit\Omega$ is hyperconvex and $K$ is regular.
Keywords:
analytic variety domain mit omega subset bbb subset subset closed subset studying jensen measures certain classes plurisubharmonic functions prove relative extremal function omega continuous mit omega hyperconvex regular
Affiliations des auteurs :
Frank Wikström  1
@article{10_4064_ap86_3_2,
author = {Frank Wikstr\"om},
title = {Continuity of the relative extremal function on analytic
varieties in $\Bbb{C}^n$},
journal = {Annales Polonici Mathematici},
pages = {219--225},
year = {2005},
volume = {86},
number = {3},
doi = {10.4064/ap86-3-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-2/}
}
TY - JOUR
AU - Frank Wikström
TI - Continuity of the relative extremal function on analytic
varieties in $\Bbb{C}^n$
JO - Annales Polonici Mathematici
PY - 2005
SP - 219
EP - 225
VL - 86
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap86-3-2/
DO - 10.4064/ap86-3-2
LA - en
ID - 10_4064_ap86_3_2
ER -
Frank Wikström. Continuity of the relative extremal function on analytic
varieties in $\Bbb{C}^n$. Annales Polonici Mathematici, Tome 86 (2005) no. 3, pp. 219-225. doi: 10.4064/ap86-3-2
Cité par Sources :