On convex and $*$-concave multifunctions
Annales Polonici Mathematici, Tome 86 (2005) no. 2, pp. 165-170
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A continuous multifunction
$F:[a,b]\to {\rm clb}(Y)$ is $*$-concave if and only if the inclusion
$$
\frac{1}{t-s}\int_s^t F(x)\,dx \subset \frac{F(s)
\mathbin{\buildrel{\ast}\over{+}}
F(t)}{2}
$$
holds for every $s,t\in[a,b]$, $s t$.
Keywords:
continuous multifunction clb * concave only inclusion frac t s int x subset frac mathbin buildrel ast holds every
Affiliations des auteurs :
Bożena Pi/atek 1
@article{10_4064_ap86_2_6,
author = {Bo\.zena Pi/atek},
title = {On convex and $*$-concave multifunctions},
journal = {Annales Polonici Mathematici},
pages = {165--170},
year = {2005},
volume = {86},
number = {2},
doi = {10.4064/ap86-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-2-6/}
}
Bożena Pi/atek. On convex and $*$-concave multifunctions. Annales Polonici Mathematici, Tome 86 (2005) no. 2, pp. 165-170. doi: 10.4064/ap86-2-6
Cité par Sources :