On convex and $*$-concave multifunctions
Annales Polonici Mathematici, Tome 86 (2005) no. 2, pp. 165-170.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A continuous multifunction $F:[a,b]\to {\rm clb}(Y)$ is $*$-concave if and only if the inclusion $$ \frac{1}{t-s}\int_s^t F(x)\,dx \subset \frac{F(s) \mathbin{\buildrel{\ast}\over{+}} F(t)}{2} $$ holds for every $s,t\in[a,b]$, $s t$.
DOI : 10.4064/ap86-2-6
Keywords: continuous multifunction clb * concave only inclusion frac t s int x subset frac mathbin buildrel ast holds every

Bożena Pi/atek 1

1 Institute of Mathematics Silesian University of Technology Kaszubska 23 44-100 Gliwice, Poland
@article{10_4064_ap86_2_6,
     author = {Bo\.zena Pi/atek},
     title = {On convex and $*$-concave multifunctions},
     journal = {Annales Polonici Mathematici},
     pages = {165--170},
     publisher = {mathdoc},
     volume = {86},
     number = {2},
     year = {2005},
     doi = {10.4064/ap86-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-2-6/}
}
TY  - JOUR
AU  - Bożena Pi/atek
TI  - On convex and $*$-concave multifunctions
JO  - Annales Polonici Mathematici
PY  - 2005
SP  - 165
EP  - 170
VL  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap86-2-6/
DO  - 10.4064/ap86-2-6
LA  - en
ID  - 10_4064_ap86_2_6
ER  - 
%0 Journal Article
%A Bożena Pi/atek
%T On convex and $*$-concave multifunctions
%J Annales Polonici Mathematici
%D 2005
%P 165-170
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap86-2-6/
%R 10.4064/ap86-2-6
%G en
%F 10_4064_ap86_2_6
Bożena Pi/atek. On convex and $*$-concave multifunctions. Annales Polonici Mathematici, Tome 86 (2005) no. 2, pp. 165-170. doi : 10.4064/ap86-2-6. http://geodesic.mathdoc.fr/articles/10.4064/ap86-2-6/

Cité par Sources :