$B$-regularity of certain domains in ${\Bbb C}^n$
Annales Polonici Mathematici, Tome 86 (2005) no. 2, pp. 137-152
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the $B$-regularity of some classes of domains in ${{\mathbb C}}^n$. The results include a complete characterization of $B$-regularity in the class of Reinhardt domains, we also give some sufficient conditions for Hartogs domains to be $B$-regular. The last result yields sufficient conditions for preservation of $B$-regularity under holomorphic mappings.
Keywords:
study b regularity classes domains mathbb results include complete characterization b regularity class reinhardt domains sufficient conditions hartogs domains b regular result yields sufficient conditions preservation b regularity under holomorphic mappings
Affiliations des auteurs :
Nguyen Quang Dieu 1 ; Nguyen Thac Dung 2 ; Dau Hoang Hung 3
@article{10_4064_ap86_2_4,
author = {Nguyen Quang Dieu and Nguyen Thac Dung and Dau Hoang Hung},
title = {$B$-regularity of certain domains in ${\Bbb C}^n$},
journal = {Annales Polonici Mathematici},
pages = {137--152},
publisher = {mathdoc},
volume = {86},
number = {2},
year = {2005},
doi = {10.4064/ap86-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-2-4/}
}
TY - JOUR
AU - Nguyen Quang Dieu
AU - Nguyen Thac Dung
AU - Dau Hoang Hung
TI - $B$-regularity of certain domains in ${\Bbb C}^n$
JO - Annales Polonici Mathematici
PY - 2005
SP - 137
EP - 152
VL - 86
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap86-2-4/
DO - 10.4064/ap86-2-4
LA - en
ID - 10_4064_ap86_2_4
ER -
%0 Journal Article
%A Nguyen Quang Dieu
%A Nguyen Thac Dung
%A Dau Hoang Hung
%T $B$-regularity of certain domains in ${\Bbb C}^n$
%J Annales Polonici Mathematici
%D 2005
%P 137-152
%V 86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap86-2-4/
%R 10.4064/ap86-2-4
%G en
%F 10_4064_ap86_2_4
Nguyen Quang Dieu; Nguyen Thac Dung; Dau Hoang Hung. $B$-regularity of certain domains in ${\Bbb C}^n$. Annales Polonici Mathematici, Tome 86 (2005) no. 2, pp. 137-152. doi: 10.4064/ap86-2-4
Cité par Sources :