On the Kantorovich–Rubinstein maximum principle
for the Fortet–Mourier norm
Annales Polonici Mathematici, Tome 86 (2005) no. 2, pp. 107-121
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A new version of the maximum principle is presented. The classical Kantorovich–Rubinstein principle gives necessary conditions for the maxima of a linear functional acting on the space of Lipschitzian functions. The maximum value of this functional defines the Hutchinson metric on the space of probability measures. We show an analogous result for the Fortet–Mourier metric. This principle is then applied in the stability theory of Markov–Feller semigroups.
Keywords:
version maximum principle presented classical kantorovich rubinstein principle gives necessary conditions maxima linear functional acting space lipschitzian functions maximum value functional defines hutchinson metric space probability measures analogous result fortet mourier metric principle applied stability theory markov feller semigroups
Affiliations des auteurs :
Henryk Gacki 1
@article{10_4064_ap86_2_2,
author = {Henryk Gacki},
title = {On the {Kantorovich{\textendash}Rubinstein} maximum principle
for the {Fortet{\textendash}Mourier} norm},
journal = {Annales Polonici Mathematici},
pages = {107--121},
publisher = {mathdoc},
volume = {86},
number = {2},
year = {2005},
doi = {10.4064/ap86-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-2-2/}
}
TY - JOUR AU - Henryk Gacki TI - On the Kantorovich–Rubinstein maximum principle for the Fortet–Mourier norm JO - Annales Polonici Mathematici PY - 2005 SP - 107 EP - 121 VL - 86 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap86-2-2/ DO - 10.4064/ap86-2-2 LA - en ID - 10_4064_ap86_2_2 ER -
Henryk Gacki. On the Kantorovich–Rubinstein maximum principle for the Fortet–Mourier norm. Annales Polonici Mathematici, Tome 86 (2005) no. 2, pp. 107-121. doi: 10.4064/ap86-2-2
Cité par Sources :