Bi-Legendrian connections
Annales Polonici Mathematici, Tome 86 (2005) no. 1, pp. 79-95
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define the concept of a bi-Legendrian connection
associated to a bi-Legendrian structure on an almost
$\cal{S}$-manifold $M^{2n+r}$. Among other things, we compute the
torsion of this connection and prove that the curvature vanishes
along the leaves of the bi-Legendrian structure. Moreover, we prove
that if the bi-Legendrian connection is flat, then the
bi-Legendrian structure is locally equivalent to the standard
structure on $\mathbb{R}^{2n+r}$.
Keywords:
define concept bi legendrian connection associated bi legendrian structure almost cal manifold among other things compute torsion connection prove curvature vanishes along leaves bi legendrian structure moreover prove bi legendrian connection flat bi legendrian structure locally equivalent standard structure mathbb
Affiliations des auteurs :
Beniamino Cappelletti Montano 1
@article{10_4064_ap86_1_8,
author = {Beniamino Cappelletti Montano},
title = {Bi-Legendrian connections},
journal = {Annales Polonici Mathematici},
pages = {79--95},
publisher = {mathdoc},
volume = {86},
number = {1},
year = {2005},
doi = {10.4064/ap86-1-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-1-8/}
}
Beniamino Cappelletti Montano. Bi-Legendrian connections. Annales Polonici Mathematici, Tome 86 (2005) no. 1, pp. 79-95. doi: 10.4064/ap86-1-8
Cité par Sources :