Inégalités de Markov tangentielles locales sur les courbes algébriques singulières de ${\Bbb R}^{n}$
Annales Polonici Mathematici, Tome 86 (2005) no. 1, pp. 59-77
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that every singular algebraic curve in $\mathbb{R}^{n}
$
admits local tangential Markov inequalities at each of its points.
More precisely, we show that the Markov exponent at a point of a real
algebraic curve $A$ is less than or equal to twice the
multiplicity of the smallest
complex algebraic curve containing $A$.
Mots-clés :
prove every singular algebraic curve mathbb admits local tangential markov inequalities each its points precisely markov exponent point real algebraic curve equal twice multiplicity smallest complex algebraic curve containing
Affiliations des auteurs :
Laurent Gendre 1
@article{10_4064_ap86_1_7,
author = {Laurent Gendre},
title = {In\'egalit\'es de {Markov} tangentielles locales sur les courbes alg\'ebriques singuli\`eres de ${\Bbb R}^{n}$},
journal = {Annales Polonici Mathematici},
pages = {59--77},
publisher = {mathdoc},
volume = {86},
number = {1},
year = {2005},
doi = {10.4064/ap86-1-7},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-1-7/}
}
TY - JOUR
AU - Laurent Gendre
TI - Inégalités de Markov tangentielles locales sur les courbes algébriques singulières de ${\Bbb R}^{n}$
JO - Annales Polonici Mathematici
PY - 2005
SP - 59
EP - 77
VL - 86
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap86-1-7/
DO - 10.4064/ap86-1-7
LA - fr
ID - 10_4064_ap86_1_7
ER -
%0 Journal Article
%A Laurent Gendre
%T Inégalités de Markov tangentielles locales sur les courbes algébriques singulières de ${\Bbb R}^{n}$
%J Annales Polonici Mathematici
%D 2005
%P 59-77
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap86-1-7/
%R 10.4064/ap86-1-7
%G fr
%F 10_4064_ap86_1_7
Laurent Gendre. Inégalités de Markov tangentielles locales sur les courbes algébriques singulières de ${\Bbb R}^{n}$. Annales Polonici Mathematici, Tome 86 (2005) no. 1, pp. 59-77. doi: 10.4064/ap86-1-7
Cité par Sources :