The Jacobian Conjecture for
symmetric Drużkowski mappings
Annales Polonici Mathematici, Tome 86 (2005) no. 1, pp. 43-46
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $k$ be an algebraically closed field of characteristic zero and $F:=x+(Ax)^{*d}:k^n\rightarrow k^n$ a Drużkowski mapping of degree $\geq 2$ with
$\mathop {\rm det}\nolimits JF=1$. We classify all such mappings whose Jacobian matrix $JF$ is symmetric. It follows that the Jacobian Conjecture holds for these mappings.
Keywords:
algebraically closed field characteristic zero *d rightarrow dru kowski mapping degree geq mathop det nolimits classify mappings whose jacobian matrix symmetric follows jacobian conjecture holds these mappings
Affiliations des auteurs :
Michiel de Bondt 1 ; Arno van den Essen 1
@article{10_4064_ap86_1_5,
author = {Michiel de Bondt and Arno van den Essen},
title = {The {Jacobian} {Conjecture} for
symmetric {Dru\.zkowski} mappings},
journal = {Annales Polonici Mathematici},
pages = {43--46},
publisher = {mathdoc},
volume = {86},
number = {1},
year = {2005},
doi = {10.4064/ap86-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-1-5/}
}
TY - JOUR AU - Michiel de Bondt AU - Arno van den Essen TI - The Jacobian Conjecture for symmetric Drużkowski mappings JO - Annales Polonici Mathematici PY - 2005 SP - 43 EP - 46 VL - 86 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap86-1-5/ DO - 10.4064/ap86-1-5 LA - en ID - 10_4064_ap86_1_5 ER -
Michiel de Bondt; Arno van den Essen. The Jacobian Conjecture for symmetric Drużkowski mappings. Annales Polonici Mathematici, Tome 86 (2005) no. 1, pp. 43-46. doi: 10.4064/ap86-1-5
Cité par Sources :