1Department of Mathematics Huizhou University Huizhou, Guangdong 516015, P.R. China 2Department of Mathematics Sun Yat-Sen (Zhongshan) University Guangzhou 510275, P.R. China
Annales Polonici Mathematici, Tome 86 (2005) no. 1, pp. 31-42
Some new oscillation
criteria are obtained for second order elliptic differential
equations with damping
$$\sum_{i,j=1}^nD_i[A_{ij}(x)D_jy]+\sum_{i=1}^nb_i(x)D_iy+q(x)f(y)=0,\ \quad
x\in{\mit\Omega},$$
where ${\mit\Omega} $ is an exterior domain in $\mathbb R^n$. These
criteria are different from most known ones in the sense that they
are based on the information only on
a sequence of subdomains of ${\mit\Omega}\subset \mathbb R^n$,
rather than on the whole exterior domain ${\mit\Omega}$. Our results are
more natural in view of the Sturm Separation Theorem.
Keywords:
oscillation criteria obtained second order elliptic differential equations damping sum sum y quad mit omega where mit omega exterior domain mathbb these criteria different known sense based information only sequence subdomains mit omega subset mathbb rather whole exterior domain mit omega results natural view sturm separation theorem
1
Department of Mathematics Huizhou University Huizhou, Guangdong 516015, P.R. China
2
Department of Mathematics Sun Yat-Sen (Zhongshan) University Guangzhou 510275, P.R. China
@article{10_4064_ap86_1_4,
author = {Rong-Kun Zhuang and Zheng-an Yao},
title = {Some new oscillation criteria for second order
elliptic equations with damping},
journal = {Annales Polonici Mathematici},
pages = {31--42},
year = {2005},
volume = {86},
number = {1},
doi = {10.4064/ap86-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap86-1-4/}
}
TY - JOUR
AU - Rong-Kun Zhuang
AU - Zheng-an Yao
TI - Some new oscillation criteria for second order
elliptic equations with damping
JO - Annales Polonici Mathematici
PY - 2005
SP - 31
EP - 42
VL - 86
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap86-1-4/
DO - 10.4064/ap86-1-4
LA - en
ID - 10_4064_ap86_1_4
ER -
%0 Journal Article
%A Rong-Kun Zhuang
%A Zheng-an Yao
%T Some new oscillation criteria for second order
elliptic equations with damping
%J Annales Polonici Mathematici
%D 2005
%P 31-42
%V 86
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap86-1-4/
%R 10.4064/ap86-1-4
%G en
%F 10_4064_ap86_1_4
Rong-Kun Zhuang; Zheng-an Yao. Some new oscillation criteria for second order
elliptic equations with damping. Annales Polonici Mathematici, Tome 86 (2005) no. 1, pp. 31-42. doi: 10.4064/ap86-1-4