Period function's convexity for Hamiltonian centers with separable variables
Annales Polonici Mathematici, Tome 85 (2005) no. 2, pp. 153-163.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A convexity theorem for the period function $T$ of Hamiltonian systems with separable variables is proved. We are interested in systems with non-monotone $T$. This result is applied to proving the uniqueness of critical orbits for second order ODE's.
DOI : 10.4064/ap85-2-5
Keywords: convexity theorem period function hamiltonian systems separable variables proved interested systems non monotone result applied proving uniqueness critical orbits second order odes

M. Sabatini 1

1 Dipartimento di Matematica Università di Trento I-38050 Povo (TN), Italy
@article{10_4064_ap85_2_5,
     author = {M. Sabatini},
     title = {Period function's convexity for {Hamiltonian} centers
 with separable variables},
     journal = {Annales Polonici Mathematici},
     pages = {153--163},
     publisher = {mathdoc},
     volume = {85},
     number = {2},
     year = {2005},
     doi = {10.4064/ap85-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap85-2-5/}
}
TY  - JOUR
AU  - M. Sabatini
TI  - Period function's convexity for Hamiltonian centers
 with separable variables
JO  - Annales Polonici Mathematici
PY  - 2005
SP  - 153
EP  - 163
VL  - 85
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap85-2-5/
DO  - 10.4064/ap85-2-5
LA  - en
ID  - 10_4064_ap85_2_5
ER  - 
%0 Journal Article
%A M. Sabatini
%T Period function's convexity for Hamiltonian centers
 with separable variables
%J Annales Polonici Mathematici
%D 2005
%P 153-163
%V 85
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap85-2-5/
%R 10.4064/ap85-2-5
%G en
%F 10_4064_ap85_2_5
M. Sabatini. Period function's convexity for Hamiltonian centers
 with separable variables. Annales Polonici Mathematici, Tome 85 (2005) no. 2, pp. 153-163. doi : 10.4064/ap85-2-5. http://geodesic.mathdoc.fr/articles/10.4064/ap85-2-5/

Cité par Sources :