Let $\mu $ be a non-negative measure with finite mass given by
$\varphi (dd^{c}\psi )^{n}$, where $\psi $ is a bounded plurisubharmonic function with zero boundary values and $\varphi
\in L^{q}((dd^{c}\psi )^{n})$, $\varphi \geq 0$, $1 \leq q \leq \infty $.
The Dirichlet problem for the complex Monge–Ampère operator with the measure $\mu $ is studied.
Keywords:
non negative measure finite mass given varphi psi where psi bounded plurisubharmonic function zero boundary values varphi psi varphi geq leq leq infty dirichlet problem complex monge amp operator measure studied
Affiliations des auteurs :
Rafa/l Czy/z 
1
;
Per Åhag 
2
1
Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
2
Institute of Mathematics Academia Sinica Taipei 11529, Taiwan
@article{10_4064_ap84_3_7,
author = {Rafa/l Czy/z and Per \r{A}hag},
title = {On the {Dirichlet} problem in the {Cegrell} classes},
journal = {Annales Polonici Mathematici},
pages = {273--279},
year = {2004},
volume = {84},
number = {3},
doi = {10.4064/ap84-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-7/}
}
TY - JOUR
AU - Rafa/l Czy/z
AU - Per Åhag
TI - On the Dirichlet problem in the Cegrell classes
JO - Annales Polonici Mathematici
PY - 2004
SP - 273
EP - 279
VL - 84
IS - 3
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-7/
DO - 10.4064/ap84-3-7
LA - en
ID - 10_4064_ap84_3_7
ER -
%0 Journal Article
%A Rafa/l Czy/z
%A Per Åhag
%T On the Dirichlet problem in the Cegrell classes
%J Annales Polonici Mathematici
%D 2004
%P 273-279
%V 84
%N 3
%U http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-7/
%R 10.4064/ap84-3-7
%G en
%F 10_4064_ap84_3_7
Rafa/l Czy/z; Per Åhag. On the Dirichlet problem in the Cegrell classes. Annales Polonici Mathematici, Tome 84 (2004) no. 3, pp. 273-279. doi: 10.4064/ap84-3-7