On the Dirichlet problem in the Cegrell classes
Annales Polonici Mathematici, Tome 84 (2004) no. 3, pp. 273-279
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\mu $ be a non-negative measure with finite mass given by
$\varphi (dd^{c}\psi )^{n}$, where $\psi $ is a bounded plurisubharmonic function with zero boundary values and $\varphi
\in L^{q}((dd^{c}\psi )^{n})$, $\varphi \geq 0$, $1 \leq q \leq \infty $.
The Dirichlet problem for the complex Monge–Ampère operator with the measure $\mu $ is studied.
Keywords:
non negative measure finite mass given varphi psi where psi bounded plurisubharmonic function zero boundary values varphi psi varphi geq leq leq infty dirichlet problem complex monge amp operator measure studied
Affiliations des auteurs :
Rafa/l Czy/z 1 ; Per Åhag 2
@article{10_4064_ap84_3_7,
author = {Rafa/l Czy/z and Per \r{A}hag},
title = {On the {Dirichlet} problem in the {Cegrell} classes},
journal = {Annales Polonici Mathematici},
pages = {273--279},
publisher = {mathdoc},
volume = {84},
number = {3},
year = {2004},
doi = {10.4064/ap84-3-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-7/}
}
TY - JOUR AU - Rafa/l Czy/z AU - Per Åhag TI - On the Dirichlet problem in the Cegrell classes JO - Annales Polonici Mathematici PY - 2004 SP - 273 EP - 279 VL - 84 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-7/ DO - 10.4064/ap84-3-7 LA - en ID - 10_4064_ap84_3_7 ER -
Rafa/l Czy/z; Per Åhag. On the Dirichlet problem in the Cegrell classes. Annales Polonici Mathematici, Tome 84 (2004) no. 3, pp. 273-279. doi: 10.4064/ap84-3-7
Cité par Sources :