A boundary cross theorem for separately holomorphic functions
Annales Polonici Mathematici, Tome 84 (2004) no. 3, pp. 237-271.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $D\subset \mathbb C^n$ and $G\subset \mathbb C^m$ be pseudoconvex domains, let $A$ (resp. $B$) be an open subset of the boundary $\partial D$ (resp. $\partial G$) and let $X$ be the $2$-fold cross $((D\cup A)\times B)\cup (A\times(B\cup G)).$ Suppose in addition that the domain $D$ (resp. $G$) is locally $\mathcal{C}^2$ smooth on $A$ (resp. $B$). We shall determine the “envelope of holomorphy" $\widehat{X}$ of $X$ in the sense that any function continuous on $X$ and separately holomorphic on $(A\times G) \cup (D\times B)$ extends to a function continuous on $\widehat{X}$ and holomorphic on the interior of $\widehat{X}.$ A generalization of this result to $N$-fold crosses is also given.
DOI : 10.4064/ap84-3-6
Keywords: subset mathbb subset mathbb pseudoconvex domains resp subset boundary partial resp partial fold cross cup times cup times cup suppose addition domain resp locally mathcal smooth resp shall determine envelope holomorphy widehat sense function continuous separately holomorphic times cup times extends function continuous widehat holomorphic interior widehat generalization result n fold crosses given

Peter Pflug 1 ; Viêt-Anh Nguyên 2

1 Fachbereich Mathematik Carl von Ossietzky Universität Oldenburg Postfach 2503 D-26111 Oldenburg, Germany
2 Fachbereich Mathematik Carl von Ossietzky Universität Oldenburg Postfach 2503, D–26111 Oldenburg, Germany
@article{10_4064_ap84_3_6,
     author = {Peter Pflug and Vi\^et-Anh Nguy\^en},
     title = {A boundary cross theorem
 for separately holomorphic functions},
     journal = {Annales Polonici Mathematici},
     pages = {237--271},
     publisher = {mathdoc},
     volume = {84},
     number = {3},
     year = {2004},
     doi = {10.4064/ap84-3-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-6/}
}
TY  - JOUR
AU  - Peter Pflug
AU  - Viêt-Anh Nguyên
TI  - A boundary cross theorem
 for separately holomorphic functions
JO  - Annales Polonici Mathematici
PY  - 2004
SP  - 237
EP  - 271
VL  - 84
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-6/
DO  - 10.4064/ap84-3-6
LA  - en
ID  - 10_4064_ap84_3_6
ER  - 
%0 Journal Article
%A Peter Pflug
%A Viêt-Anh Nguyên
%T A boundary cross theorem
 for separately holomorphic functions
%J Annales Polonici Mathematici
%D 2004
%P 237-271
%V 84
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-6/
%R 10.4064/ap84-3-6
%G en
%F 10_4064_ap84_3_6
Peter Pflug; Viêt-Anh Nguyên. A boundary cross theorem
 for separately holomorphic functions. Annales Polonici Mathematici, Tome 84 (2004) no. 3, pp. 237-271. doi : 10.4064/ap84-3-6. http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-6/

Cité par Sources :