A boundary cross theorem
for separately holomorphic functions
Annales Polonici Mathematici, Tome 84 (2004) no. 3, pp. 237-271
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $D\subset \mathbb C^n$ and $G\subset \mathbb C^m$ be pseudoconvex domains, let
$A$ (resp. $B$) be an open subset of the boundary $\partial D$ (resp.
$\partial G$) and let $X$ be the $2$-fold cross $((D\cup A)\times B)\cup (A\times(B\cup G)).$
Suppose in addition that the domain $D$ (resp. $G$) is locally $\mathcal{C}^2$ smooth
on $A$ (resp. $B$).
We shall determine the “envelope of holomorphy"
$\widehat{X}$ of $X$ in the sense that any function continuous on $X$ and separately
holomorphic
on $(A\times G) \cup (D\times B)$ extends to a function continuous on $\widehat{X}$
and holomorphic on the interior of $\widehat{X}.$ A generalization
of this result
to $N$-fold crosses is also given.
Keywords:
subset mathbb subset mathbb pseudoconvex domains resp subset boundary partial resp partial fold cross cup times cup times cup suppose addition domain resp locally mathcal smooth resp shall determine envelope holomorphy widehat sense function continuous separately holomorphic times cup times extends function continuous widehat holomorphic interior widehat generalization result n fold crosses given
Affiliations des auteurs :
Peter Pflug 1 ; Viêt-Anh Nguyên 2
@article{10_4064_ap84_3_6,
author = {Peter Pflug and Vi\^et-Anh Nguy\^en},
title = {A boundary cross theorem
for separately holomorphic functions},
journal = {Annales Polonici Mathematici},
pages = {237--271},
publisher = {mathdoc},
volume = {84},
number = {3},
year = {2004},
doi = {10.4064/ap84-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-6/}
}
TY - JOUR AU - Peter Pflug AU - Viêt-Anh Nguyên TI - A boundary cross theorem for separately holomorphic functions JO - Annales Polonici Mathematici PY - 2004 SP - 237 EP - 271 VL - 84 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-6/ DO - 10.4064/ap84-3-6 LA - en ID - 10_4064_ap84_3_6 ER -
Peter Pflug; Viêt-Anh Nguyên. A boundary cross theorem for separately holomorphic functions. Annales Polonici Mathematici, Tome 84 (2004) no. 3, pp. 237-271. doi: 10.4064/ap84-3-6
Cité par Sources :