Holomorphic series expansion of functions of
Carleman type
Annales Polonici Mathematici, Tome 84 (2004) no. 3, pp. 219-224
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $f$ be a holomorphic function of Carleman type in a bounded convex domain $D$ of the plane. We show that $f$ can be expanded in a series $f=\sum _n f_{n}$, where $f_{n}$ is a holomorphic function in $D_{n}$ satisfying $\mathop {\rm sup}_{z\in D_{n}}|f_{n}(z)| \leq C\varrho ^{n}$ for some constants $C>0$ and $0\varrho 1$, and where $(D_{n})_{n}$ is a suitably chosen sequence of decreasing neighborhoods of the closure of $D$. Conversely, if $f$ admits such an expansion then $f$ is of Carleman type. The decrease of the sequence $D_n$ characterizes the smoothness of $f$.
Keywords:
holomorphic function carleman type bounded convex domain plane expanded series sum where holomorphic function satisfying mathop sup leq varrho constants varrho where suitably chosen sequence decreasing neighborhoods closure conversely admits expansion carleman type decrease sequence characterizes smoothness
Affiliations des auteurs :
Taib Belghiti 1
@article{10_4064_ap84_3_4,
author = {Taib Belghiti},
title = {Holomorphic series expansion of functions of
{Carleman} type},
journal = {Annales Polonici Mathematici},
pages = {219--224},
publisher = {mathdoc},
volume = {84},
number = {3},
year = {2004},
doi = {10.4064/ap84-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap84-3-4/}
}
Taib Belghiti. Holomorphic series expansion of functions of Carleman type. Annales Polonici Mathematici, Tome 84 (2004) no. 3, pp. 219-224. doi: 10.4064/ap84-3-4
Cité par Sources :