A pseudo-trigonometry related to Ptolemy's theorem
and the hyperbolic geometry of punctured spheres
Annales Polonici Mathematici, Tome 84 (2004) no. 2, pp. 147-167
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A hyperbolic geodesic joining two punctures on a Riemann surface
has infinite length. To obtain a useful distance-like quantity we
define a finite pseudo-length of such a geodesic in terms of
the hyperbolic length of its surrounding geodesic loop. There is a
well defined angle between two geodesics meeting at a puncture,
and our pseudo-trigonometry connects these angles with
pseudo-lengths. We state and prove a theorem resembling Ptolemy's
classical theorem on cyclic quadrilaterals and three general
lemmas on intersections of shortest (in the sense of
pseudo-length) geodesic joins. These ideas are then applied to the
description of an optimal fundamental region for the covering
Fuchsian group of a five-punctured sphere, effectively also giving
a fundamental region for the modular group $M(0,5)$.
Keywords:
hyperbolic geodesic joining punctures riemann surface has infinite length obtain useful distance like quantity define finite pseudo length geodesic terms hyperbolic length its surrounding geodesic loop there defined angle between geodesics meeting puncture pseudo trigonometry connects these angles pseudo lengths state prove theorem resembling ptolemys classical theorem cyclic quadrilaterals three general lemmas intersections shortest sense pseudo length geodesic joins these ideas applied description optimal fundamental region covering fuchsian group five punctured sphere effectively giving fundamental region modular group
Affiliations des auteurs :
Joachim A. Hempel 1
@article{10_4064_ap84_2_5,
author = {Joachim A. Hempel},
title = {A pseudo-trigonometry related to {Ptolemy's} theorem
and the hyperbolic geometry of punctured spheres},
journal = {Annales Polonici Mathematici},
pages = {147--167},
publisher = {mathdoc},
volume = {84},
number = {2},
year = {2004},
doi = {10.4064/ap84-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap84-2-5/}
}
TY - JOUR AU - Joachim A. Hempel TI - A pseudo-trigonometry related to Ptolemy's theorem and the hyperbolic geometry of punctured spheres JO - Annales Polonici Mathematici PY - 2004 SP - 147 EP - 167 VL - 84 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap84-2-5/ DO - 10.4064/ap84-2-5 LA - en ID - 10_4064_ap84_2_5 ER -
%0 Journal Article %A Joachim A. Hempel %T A pseudo-trigonometry related to Ptolemy's theorem and the hyperbolic geometry of punctured spheres %J Annales Polonici Mathematici %D 2004 %P 147-167 %V 84 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap84-2-5/ %R 10.4064/ap84-2-5 %G en %F 10_4064_ap84_2_5
Joachim A. Hempel. A pseudo-trigonometry related to Ptolemy's theorem and the hyperbolic geometry of punctured spheres. Annales Polonici Mathematici, Tome 84 (2004) no. 2, pp. 147-167. doi: 10.4064/ap84-2-5
Cité par Sources :