Stability of solutions for an abstract Dirichlet problem
Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 273-280
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider continuous dependence of solutions on the right hand side for a semilinear operator equation $Lx=\nabla G( x) $, where $L:D( L) \subset
Y\rightarrow Y$ ($Y$ a Hilbert space) is self-adjoint and positive definite and
$G:Y\rightarrow Y$ is a convex functional with superquadratic growth. As applications we derive some stability results and dependence on a functional parameter for a fourth order Dirichlet problem. Applications to P.D.E. are also given.
Keywords:
consider continuous dependence solutions right side semilinear operator equation nabla where subset rightarrow hilbert space self adjoint positive definite rightarrow convex functional superquadratic growth applications derive stability results dependence functional parameter fourth order dirichlet problem applications given
Affiliations des auteurs :
Marek Galewski 1
@article{10_4064_ap83_3_9,
author = {Marek Galewski},
title = {Stability of solutions for an abstract {Dirichlet} problem},
journal = {Annales Polonici Mathematici},
pages = {273--280},
year = {2004},
volume = {83},
number = {3},
doi = {10.4064/ap83-3-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-9/}
}
Marek Galewski. Stability of solutions for an abstract Dirichlet problem. Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 273-280. doi: 10.4064/ap83-3-9
Cité par Sources :