Holomorphic line bundles on a domain
of a two-dimensional Stein manifold
Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 269-272
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $D$ be an open subset of a two-dimensional Stein manifold $S$.
Then $D$ is Stein if and only if every holomorphic line bundle $L$
on $D$ is the line bundle associated to some (not necessarily effective)
Cartier divisor $\mathfrak{d}$ on $D$.
Keywords:
subset two dimensional stein manifold stein only every holomorphic line bundle line bundle associated necessarily effective cartier divisor mathfrak
Affiliations des auteurs :
Makoto Abe 1
@article{10_4064_ap83_3_8,
author = {Makoto Abe},
title = {Holomorphic line bundles on a domain
of a two-dimensional {Stein} manifold},
journal = {Annales Polonici Mathematici},
pages = {269--272},
year = {2004},
volume = {83},
number = {3},
doi = {10.4064/ap83-3-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-8/}
}
Makoto Abe. Holomorphic line bundles on a domain of a two-dimensional Stein manifold. Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 269-272. doi: 10.4064/ap83-3-8
Cité par Sources :