Holomorphic line bundles on a domain of a two-dimensional Stein manifold
Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 269-272.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $D$ be an open subset of a two-dimensional Stein manifold $S$. Then $D$ is Stein if and only if every holomorphic line bundle $L$ on $D$ is the line bundle associated to some (not necessarily effective) Cartier divisor $\mathfrak{d}$ on $D$.
DOI : 10.4064/ap83-3-8
Keywords: subset two dimensional stein manifold stein only every holomorphic line bundle line bundle associated necessarily effective cartier divisor mathfrak

Makoto Abe 1

1 School of Health Sciences Kumamoto University Kumamoto 862-0976, Japan
@article{10_4064_ap83_3_8,
     author = {Makoto Abe},
     title = {Holomorphic line bundles on a domain
 of a two-dimensional {Stein} manifold},
     journal = {Annales Polonici Mathematici},
     pages = {269--272},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2004},
     doi = {10.4064/ap83-3-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-8/}
}
TY  - JOUR
AU  - Makoto Abe
TI  - Holomorphic line bundles on a domain
 of a two-dimensional Stein manifold
JO  - Annales Polonici Mathematici
PY  - 2004
SP  - 269
EP  - 272
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-8/
DO  - 10.4064/ap83-3-8
LA  - en
ID  - 10_4064_ap83_3_8
ER  - 
%0 Journal Article
%A Makoto Abe
%T Holomorphic line bundles on a domain
 of a two-dimensional Stein manifold
%J Annales Polonici Mathematici
%D 2004
%P 269-272
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-8/
%R 10.4064/ap83-3-8
%G en
%F 10_4064_ap83_3_8
Makoto Abe. Holomorphic line bundles on a domain
 of a two-dimensional Stein manifold. Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 269-272. doi : 10.4064/ap83-3-8. http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-8/

Cité par Sources :