Stability of the Cauchy functional equation
in quasi-Banach spaces
Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 243-255
Let $X$ be a quasi-Banach space. We prove that there exists $K>0$
such that for every function $w:\mathbb R \to X$ satisfying
$$
\|w(s+t)-w(s)-w(t) \| \leq \varepsilon (|s|+|t|) \quad\ \hbox{for } s,t \in \mathbb R,
$$
there exists a unique additive function $a:\mathbb R \to X$ such that
$a(1)=0$ and
$$
\|w(s)-a(s)-s \theta(\log_2|s|)\| \leq K\varepsilon|s| \quad\ \hbox{for } s \in \mathbb R,
$$
where $\theta :\mathbb R \to X$ is defined by $\theta(k):=w(2^k)/2^k$ for
$k \in \mathbb Z$ and extended in a piecewise linear way over the rest of $\mathbb R$.
Keywords:
quasi banach space prove there exists every function mathbb satisfying w w leq varepsilon quad hbox mathbb there exists unique additive function mathbb a s theta log leq varepsilon quad hbox mathbb where theta mathbb defined theta mathbb extended piecewise linear rest mathbb
Affiliations des auteurs :
Jacek Tabor  1
@article{10_4064_ap83_3_6,
author = {Jacek Tabor},
title = {Stability of the {Cauchy} functional equation
in {quasi-Banach} spaces},
journal = {Annales Polonici Mathematici},
pages = {243--255},
year = {2004},
volume = {83},
number = {3},
doi = {10.4064/ap83-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-6/}
}
Jacek Tabor. Stability of the Cauchy functional equation in quasi-Banach spaces. Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 243-255. doi: 10.4064/ap83-3-6
Cité par Sources :