Applications of global bifurcation to existence theorems for Sturm–Liouville problems
Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 221-229.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove an existence theorem for Sturm–Liouville problems $$ \cases{ u''(t) + \varphi(t,u(t),u'(t)) = 0 \hbox{for a.e. }t\in(a,b), \cr l(u) = 0, } \tag*{$(*)$} $$ where $\varphi:[a,b]\times\mathbb R^k\times\mathbb R^k\to\mathbb R^k$ is a Carathéodory map.We assume that $\varphi(t,x,y) = m_1 \varphi_0(t,x,y) + o(|x|+|y|)$ as $|x|+|y|\to 0$ and $\varphi(t,x,y) = m_2 \varphi_0(t,x,y) + o(|x|+|y|)$ as $|x|+|y|\to \infty$, where $m_1,m_2$ are positive constants and $\varphi_0$ belongs to a class of nonlinear maps. The proof bases on global bifurcation results. We define a map $f:(0,\infty)\times C^1([a,b],\mathbb R^k)\to C^1([a,b],\mathbb R^k)$ such that if $f(1,u)=0$, then $u$ is a solution of $(*)$. Then we show that there exists a connected set ${\cal C}$ of nontrivial zeroes of $f$ such that there exist $(\lambda_1,u_1),(\lambda_2,u_2)\in{\cal C}$ with $\lambda_11\lambda_2$. In the last section we give examples of maps $\varphi_0$ leading to specific existence theorems.
DOI : 10.4064/ap83-3-4
Keywords: prove existence theorem sturm liouville problems cases varphi hbox tag* * where varphi times mathbb times mathbb mathbb carath odory map assume varphi varphi varphi varphi infty where positive constants varphi belongs class nonlinear maps proof bases global bifurcation results define map infty times mathbb mathbb solution * there exists connected set cal nontrivial zeroes there exist lambda lambda cal lambda lambda section examples maps varphi leading specific existence theorems

Jacek Gulgowski 1

1 Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdań}sk, Poland
@article{10_4064_ap83_3_4,
     author = {Jacek Gulgowski},
     title = {Applications of global bifurcation to
 existence theorems for {Sturm{\textendash}Liouville} problems},
     journal = {Annales Polonici Mathematici},
     pages = {221--229},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2004},
     doi = {10.4064/ap83-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-4/}
}
TY  - JOUR
AU  - Jacek Gulgowski
TI  - Applications of global bifurcation to
 existence theorems for Sturm–Liouville problems
JO  - Annales Polonici Mathematici
PY  - 2004
SP  - 221
EP  - 229
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-4/
DO  - 10.4064/ap83-3-4
LA  - en
ID  - 10_4064_ap83_3_4
ER  - 
%0 Journal Article
%A Jacek Gulgowski
%T Applications of global bifurcation to
 existence theorems for Sturm–Liouville problems
%J Annales Polonici Mathematici
%D 2004
%P 221-229
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-4/
%R 10.4064/ap83-3-4
%G en
%F 10_4064_ap83_3_4
Jacek Gulgowski. Applications of global bifurcation to
 existence theorems for Sturm–Liouville problems. Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 221-229. doi : 10.4064/ap83-3-4. http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-4/

Cité par Sources :