Applications of global bifurcation to
existence theorems for Sturm–Liouville problems
Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 221-229
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove an existence theorem for Sturm–Liouville
problems
$$ \cases{ u''(t) + \varphi(t,u(t),u'(t)) = 0 \hbox{for a.e. }t\in(a,b), \cr l(u) = 0, }
\tag*{$(*)$} $$
where $\varphi:[a,b]\times\mathbb R^k\times\mathbb R^k\to\mathbb R^k$ is a Carathéodory map.We assume that
$\varphi(t,x,y) = m_1 \varphi_0(t,x,y) + o(|x|+|y|)$
as $|x|+|y|\to 0$ and $\varphi(t,x,y) = m_2 \varphi_0(t,x,y) + o(|x|+|y|)$
as $|x|+|y|\to \infty$,
where $m_1,m_2$ are positive constants and
$\varphi_0$ belongs to a class of nonlinear maps. The proof
bases on global bifurcation results. We define
a map $f:(0,\infty)\times C^1([a,b],\mathbb R^k)\to C^1([a,b],\mathbb R^k)$
such that if $f(1,u)=0$, then $u$ is a solution of $(*)$. Then we show that there exists
a connected set ${\cal C}$ of nontrivial zeroes of $f$
such that there exist $(\lambda_1,u_1),(\lambda_2,u_2)\in{\cal C}$
with $\lambda_11\lambda_2$.
In the last section we give
examples of maps $\varphi_0$ leading to
specific existence theorems.
Keywords:
prove existence theorem sturm liouville problems cases varphi hbox tag* * where varphi times mathbb times mathbb mathbb carath odory map assume varphi varphi varphi varphi infty where positive constants varphi belongs class nonlinear maps proof bases global bifurcation results define map infty times mathbb mathbb solution * there exists connected set cal nontrivial zeroes there exist lambda lambda cal lambda lambda section examples maps varphi leading specific existence theorems
Affiliations des auteurs :
Jacek Gulgowski 1
@article{10_4064_ap83_3_4,
author = {Jacek Gulgowski},
title = {Applications of global bifurcation to
existence theorems for {Sturm{\textendash}Liouville} problems},
journal = {Annales Polonici Mathematici},
pages = {221--229},
year = {2004},
volume = {83},
number = {3},
doi = {10.4064/ap83-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-4/}
}
TY - JOUR AU - Jacek Gulgowski TI - Applications of global bifurcation to existence theorems for Sturm–Liouville problems JO - Annales Polonici Mathematici PY - 2004 SP - 221 EP - 229 VL - 83 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-4/ DO - 10.4064/ap83-3-4 LA - en ID - 10_4064_ap83_3_4 ER -
Jacek Gulgowski. Applications of global bifurcation to existence theorems for Sturm–Liouville problems. Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 221-229. doi: 10.4064/ap83-3-4
Cité par Sources :