Matrix inequalities and the complex Monge–Ampère operator
Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 211-220.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study two known theorems regarding Hermitian matrices: Bellman's principle and Hadamard's theorem. Then we apply them to problems for the complex Monge–Ampère operator. We use Bellman's principle and the theory for plurisubharmonic functions of finite energy to prove a version of subadditivity for the complex Monge–Ampère operator. Then we show how Hadamard's theorem can be extended to polyradial plurisubharmonic functions.
DOI : 10.4064/ap83-3-3
Keywords: study known theorems regarding hermitian matrices bellmans principle hadamards theorem apply problems complex monge amp operator bellmans principle theory plurisubharmonic functions finite energy prove version subadditivity complex monge amp operator hadamards theorem extended polyradial plurisubharmonic functions

Jonas Wiklund 1

1 Matematiska Institutionen Umeå Universitet S-901 87 Umeå, Sweden
@article{10_4064_ap83_3_3,
     author = {Jonas Wiklund},
     title = {Matrix inequalities and the complex
 {Monge{\textendash}Amp\`ere} operator},
     journal = {Annales Polonici Mathematici},
     pages = {211--220},
     publisher = {mathdoc},
     volume = {83},
     number = {3},
     year = {2004},
     doi = {10.4064/ap83-3-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-3/}
}
TY  - JOUR
AU  - Jonas Wiklund
TI  - Matrix inequalities and the complex
 Monge–Ampère operator
JO  - Annales Polonici Mathematici
PY  - 2004
SP  - 211
EP  - 220
VL  - 83
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-3/
DO  - 10.4064/ap83-3-3
LA  - en
ID  - 10_4064_ap83_3_3
ER  - 
%0 Journal Article
%A Jonas Wiklund
%T Matrix inequalities and the complex
 Monge–Ampère operator
%J Annales Polonici Mathematici
%D 2004
%P 211-220
%V 83
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-3/
%R 10.4064/ap83-3-3
%G en
%F 10_4064_ap83_3_3
Jonas Wiklund. Matrix inequalities and the complex
 Monge–Ampère operator. Annales Polonici Mathematici, Tome 83 (2004) no. 3, pp. 211-220. doi : 10.4064/ap83-3-3. http://geodesic.mathdoc.fr/articles/10.4064/ap83-3-3/

Cité par Sources :