Asymptotic stability in $L^1$ of a transport equation
Annales Polonici Mathematici, Tome 83 (2004) no. 2, pp. 95-105.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the asymptotic behaviour of solutions of a transport equation. We give some sufficient conditions for the complete mixing property of the Markov semigroup generated by this equation.
DOI : 10.4064/ap83-2-1
Keywords: study asymptotic behaviour solutions transport equation sufficient conditions complete mixing property markov semigroup generated equation

M. /Sl/eczka 1

1 Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland
@article{10_4064_ap83_2_1,
     author = {M. /Sl/eczka},
     title = {Asymptotic stability in $L^1$ of a transport equation},
     journal = {Annales Polonici Mathematici},
     pages = {95--105},
     publisher = {mathdoc},
     volume = {83},
     number = {2},
     year = {2004},
     doi = {10.4064/ap83-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-2-1/}
}
TY  - JOUR
AU  - M. /Sl/eczka
TI  - Asymptotic stability in $L^1$ of a transport equation
JO  - Annales Polonici Mathematici
PY  - 2004
SP  - 95
EP  - 105
VL  - 83
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap83-2-1/
DO  - 10.4064/ap83-2-1
LA  - en
ID  - 10_4064_ap83_2_1
ER  - 
%0 Journal Article
%A M. /Sl/eczka
%T Asymptotic stability in $L^1$ of a transport equation
%J Annales Polonici Mathematici
%D 2004
%P 95-105
%V 83
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap83-2-1/
%R 10.4064/ap83-2-1
%G en
%F 10_4064_ap83_2_1
M. /Sl/eczka. Asymptotic stability in $L^1$ of a transport equation. Annales Polonici Mathematici, Tome 83 (2004) no. 2, pp. 95-105. doi : 10.4064/ap83-2-1. http://geodesic.mathdoc.fr/articles/10.4064/ap83-2-1/

Cité par Sources :