Natural operators lifting functions to affinors on higher order cotangent bundles
Annales Polonici Mathematici, Tome 83 (2004) no. 1, pp. 49-55.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For natural numbers $n\geq 3$ and $r\geq 1$ all natural operators $A:T^{(0,0)}_{| {\mathcal M}f_n} \rightsquigarrow T^{(1,1)}T^{r*}$ transforming functions from $n$-manifolds into affinors (i.e. tensor fields of type $(1,1)$) on the $r$-cotangent bundle are classified.
DOI : 10.4064/ap83-1-6
Keywords: natural numbers geq geq natural operators mathcal rightsquigarrow r* transforming functions n manifolds affinors tensor fields type r cotangent bundle classified

W. M. Mikulski 1

1 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_ap83_1_6,
     author = {W. M. Mikulski},
     title = {Natural operators lifting functions to affinors
 on higher order cotangent bundles},
     journal = {Annales Polonici Mathematici},
     pages = {49--55},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2004},
     doi = {10.4064/ap83-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-6/}
}
TY  - JOUR
AU  - W. M. Mikulski
TI  - Natural operators lifting functions to affinors
 on higher order cotangent bundles
JO  - Annales Polonici Mathematici
PY  - 2004
SP  - 49
EP  - 55
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-6/
DO  - 10.4064/ap83-1-6
LA  - en
ID  - 10_4064_ap83_1_6
ER  - 
%0 Journal Article
%A W. M. Mikulski
%T Natural operators lifting functions to affinors
 on higher order cotangent bundles
%J Annales Polonici Mathematici
%D 2004
%P 49-55
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-6/
%R 10.4064/ap83-1-6
%G en
%F 10_4064_ap83_1_6
W. M. Mikulski. Natural operators lifting functions to affinors
 on higher order cotangent bundles. Annales Polonici Mathematici, Tome 83 (2004) no. 1, pp. 49-55. doi : 10.4064/ap83-1-6. http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-6/

Cité par Sources :