Mean lower bounds for Markov operators
Annales Polonici Mathematici, Tome 83 (2004) no. 1, pp. 11-19
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $T$ be a Markov operator on an $L^1$-space. We study conditions under which $T$ is mean ergodic and satisfies $\mathop {\rm dim}\nolimits \mathop {\rm Fix}\nolimits (T)\infty $. Among other things we prove that the sequence $(n^{-1}\sum _{k=0}^{n-1}T^k)_n$ converges strongly to a rank-one projection if and only if there exists a function $0\not =h\in L^1_+$ which satisfies $\mathop {\rm lim}_{n\to \infty }\| (h-n^{-1}\sum _{k=0}^{n-1}T^kf)_+\| =0$ for every density $f$. Analogous results for strongly continuous semigroups are given.
Keywords:
markov operator space study conditions under which mean ergodic satisfies mathop dim nolimits mathop fix nolimits infty among other things prove sequence sum n converges strongly rank one projection only there exists function which satisfies mathop lim infty h n sum n every density analogous results strongly continuous semigroups given
Affiliations des auteurs :
Eduard Emel'yanov 1 ; Manfred Wolff 2
@article{10_4064_ap83_1_2,
author = {Eduard Emel'yanov and Manfred Wolff},
title = {Mean lower bounds for {Markov} operators},
journal = {Annales Polonici Mathematici},
pages = {11--19},
year = {2004},
volume = {83},
number = {1},
doi = {10.4064/ap83-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-2/}
}
Eduard Emel'yanov; Manfred Wolff. Mean lower bounds for Markov operators. Annales Polonici Mathematici, Tome 83 (2004) no. 1, pp. 11-19. doi: 10.4064/ap83-1-2
Cité par Sources :