Mean lower bounds for Markov operators
Annales Polonici Mathematici, Tome 83 (2004) no. 1, pp. 11-19.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $T$ be a Markov operator on an $L^1$-space. We study conditions under which $T$ is mean ergodic and satisfies $\mathop {\rm dim}\nolimits \mathop {\rm Fix}\nolimits (T)\infty $. Among other things we prove that the sequence $(n^{-1}\sum _{k=0}^{n-1}T^k)_n$ converges strongly to a rank-one projection if and only if there exists a function $0\not =h\in L^1_+$ which satisfies $\mathop {\rm lim}_{n\to \infty }\| (h-n^{-1}\sum _{k=0}^{n-1}T^kf)_+\| =0$ for every density $f$. Analogous results for strongly continuous semigroups are given.
DOI : 10.4064/ap83-1-2
Keywords: markov operator space study conditions under which mean ergodic satisfies mathop dim nolimits mathop fix nolimits infty among other things prove sequence sum n converges strongly rank one projection only there exists function which satisfies mathop lim infty h n sum n every density analogous results strongly continuous semigroups given

Eduard Emel'yanov 1 ; Manfred Wolff 2

1 Sobolev Institute of Mathematics Akad. Koptyug pr. 4 630090 Novosibirsk, Russia
2 Mathematisches Institut Universität Tübingen Auf der Morgenstelle 10 D-72076 Tübingen, Germany
@article{10_4064_ap83_1_2,
     author = {Eduard Emel'yanov and Manfred Wolff},
     title = {Mean lower bounds for {Markov} operators},
     journal = {Annales Polonici Mathematici},
     pages = {11--19},
     publisher = {mathdoc},
     volume = {83},
     number = {1},
     year = {2004},
     doi = {10.4064/ap83-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-2/}
}
TY  - JOUR
AU  - Eduard Emel'yanov
AU  - Manfred Wolff
TI  - Mean lower bounds for Markov operators
JO  - Annales Polonici Mathematici
PY  - 2004
SP  - 11
EP  - 19
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-2/
DO  - 10.4064/ap83-1-2
LA  - en
ID  - 10_4064_ap83_1_2
ER  - 
%0 Journal Article
%A Eduard Emel'yanov
%A Manfred Wolff
%T Mean lower bounds for Markov operators
%J Annales Polonici Mathematici
%D 2004
%P 11-19
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-2/
%R 10.4064/ap83-1-2
%G en
%F 10_4064_ap83_1_2
Eduard Emel'yanov; Manfred Wolff. Mean lower bounds for Markov operators. Annales Polonici Mathematici, Tome 83 (2004) no. 1, pp. 11-19. doi : 10.4064/ap83-1-2. http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-2/

Cité par Sources :