Hukuhara's differentiable iteration semigroups of
linear set-valued functions
Annales Polonici Mathematici, Tome 83 (2004) no. 1, pp. 1-10
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $K$ be a closed convex cone with nonempty interior in
a real Banach space and let $cc(K)$ denote the family of all nonempty
convex compact subsets of $K$. A family $\{F^{t}: t \geq 0 \}$ of
continuous linear set-valued functions $F^{t}: K \to cc(K)$ is a
differentiable iteration semigroup with $F^{0}(x) = \{x \}$ for $x \in K$
if and only if the set-valued function ${\mit\Phi}(t,x) = F^{t}(x)$
is a solution of the problem
$$
D_{t} {\mit\Phi}(t,x) = {\mit\Phi}(t,G(x)) := \bigcup \{ {\mit\Phi}(t,y): y \in G(x) \},\quad\
{\mit\Phi}(0,x) = \{ x \},
$$
for $x \in K$ and $t \geq 0$, where $D_{t} {\mit\Phi}(t,x)$
denotes the Hukuhara derivative of ${\mit\Phi}(t,x)$ with respect
to $t$ and
$
G(x) := \lim_{s \to 0+} (F^{s}(x) - x)/{s}
$
for $x \in K.$
Keywords:
closed convex cone nonempty interior real banach space denote family nonempty convex compact subsets family geq continuous linear set valued functions differentiable iteration semigroup only set valued function mit phi solution problem mit phi mit phi bigcup mit phi quad mit phi geq where mit phi denotes hukuhara derivative mit phi respect lim
Affiliations des auteurs :
Andrzej Smajdor 1
@article{10_4064_ap83_1_1,
author = {Andrzej Smajdor},
title = {Hukuhara's differentiable iteration semigroups of
linear set-valued functions},
journal = {Annales Polonici Mathematici},
pages = {1--10},
year = {2004},
volume = {83},
number = {1},
doi = {10.4064/ap83-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-1/}
}
TY - JOUR AU - Andrzej Smajdor TI - Hukuhara's differentiable iteration semigroups of linear set-valued functions JO - Annales Polonici Mathematici PY - 2004 SP - 1 EP - 10 VL - 83 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap83-1-1/ DO - 10.4064/ap83-1-1 LA - en ID - 10_4064_ap83_1_1 ER -
Andrzej Smajdor. Hukuhara's differentiable iteration semigroups of linear set-valued functions. Annales Polonici Mathematici, Tome 83 (2004) no. 1, pp. 1-10. doi: 10.4064/ap83-1-1
Cité par Sources :