Hamilton–Jacobi functional differential equations
with unbounded delay
Annales Polonici Mathematici, Tome 82 (2003) no. 2, pp. 105-126
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The Cauchy problem for nonlinear functional differential equations on the Haar pyramid is considered. The phase space for generalized solutions is constructed. An existence theorem is proved by using the method of successive approximations. The theory of characteristics and integral inequalities are used. Examples of phase spaces are given.
Keywords:
cauchy problem nonlinear functional differential equations haar pyramid considered phase space generalized solutions constructed existence theorem proved using method successive approximations theory characteristics integral inequalities examples phase spaces given
Affiliations des auteurs :
Adam Nadolski 1
@article{10_4064_ap82_2_2,
author = {Adam Nadolski},
title = {Hamilton{\textendash}Jacobi functional differential equations
with unbounded delay},
journal = {Annales Polonici Mathematici},
pages = {105--126},
publisher = {mathdoc},
volume = {82},
number = {2},
year = {2003},
doi = {10.4064/ap82-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap82-2-2/}
}
TY - JOUR AU - Adam Nadolski TI - Hamilton–Jacobi functional differential equations with unbounded delay JO - Annales Polonici Mathematici PY - 2003 SP - 105 EP - 126 VL - 82 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap82-2-2/ DO - 10.4064/ap82-2-2 LA - en ID - 10_4064_ap82_2_2 ER -
Adam Nadolski. Hamilton–Jacobi functional differential equations with unbounded delay. Annales Polonici Mathematici, Tome 82 (2003) no. 2, pp. 105-126. doi: 10.4064/ap82-2-2
Cité par Sources :