1Departamento de Xeometría e Topoloxía Facultade de Matemáticas Universidade de Santiago de Compostela 15706 Santiago de Compostela, Spain 2Departamento de Matemática nstituto de Matemática e Computação Universidade de São Paulo Campus de São Carlos Caixa Postal 668 13560-970 São Carlos SP, Brasil 3Departamento de Matemática Instituto de Matemática e Computação Universidade de São Paulo Campus de São Carlos Caixa Postal 668 13560-970 São Carlos SP, Brasil
Annales Polonici Mathematici, Tome 82 (2003) no. 1, pp. 61-69
Let $N$ be a closed orientable $n$-manifold, $n\ge 3$, and $K$ a compact non-empty subset. We prove that the existence of a transversally orientable codimension one foliation on $N\setminus K$ with leaves homeomorphic to
${{\mathbb R}}^{n-1}$, in the relative topology, implies that $K$ must be connected. If in addition one imposes some restrictions on the homology of $K$, then $N$ must be a homotopy sphere. Next we consider $C^{2}$ actions of a Lie group diffeomorphic to ${\mathbb R}^{n-1}$ on $N$ and obtain our main result: if $K$, the set of singular points of the action, is a finite non-empty subset, then $K$ contains only one point and $N$ is homeomorphic to $S^{n}$.
Keywords:
closed orientable n manifold compact non empty subset prove existence transversally orientable codimension foliation setminus leaves homeomorphic mathbb n relative topology implies connected addition imposes restrictions homology homotopy sphere consider actions lie group diffeomorphic mathbb n obtain main result set singular points action finite non empty subset contains only point homeomorphic
Affiliations des auteurs :
J. A. Álvarez López 
1
;
J. L. Arraut 
2
;
C. Biasi 
3
1
Departamento de Xeometría e Topoloxía Facultade de Matemáticas Universidade de Santiago de Compostela 15706 Santiago de Compostela, Spain
2
Departamento de Matemática nstituto de Matemática e Computação Universidade de São Paulo Campus de São Carlos Caixa Postal 668 13560-970 São Carlos SP, Brasil
3
Departamento de Matemática Instituto de Matemática e Computação Universidade de São Paulo Campus de São Carlos Caixa Postal 668 13560-970 São Carlos SP, Brasil
@article{10_4064_ap82_1_7,
author = {J. A. \'Alvarez L\'opez and J. L. Arraut and C. Biasi},
title = {Foliations by planes and {Lie} group actions},
journal = {Annales Polonici Mathematici},
pages = {61--69},
year = {2003},
volume = {82},
number = {1},
doi = {10.4064/ap82-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-7/}
}
TY - JOUR
AU - J. A. Álvarez López
AU - J. L. Arraut
AU - C. Biasi
TI - Foliations by planes and Lie group actions
JO - Annales Polonici Mathematici
PY - 2003
SP - 61
EP - 69
VL - 82
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-7/
DO - 10.4064/ap82-1-7
LA - en
ID - 10_4064_ap82_1_7
ER -
%0 Journal Article
%A J. A. Álvarez López
%A J. L. Arraut
%A C. Biasi
%T Foliations by planes and Lie group actions
%J Annales Polonici Mathematici
%D 2003
%P 61-69
%V 82
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-7/
%R 10.4064/ap82-1-7
%G en
%F 10_4064_ap82_1_7
J. A. Álvarez López; J. L. Arraut; C. Biasi. Foliations by planes and Lie group actions. Annales Polonici Mathematici, Tome 82 (2003) no. 1, pp. 61-69. doi: 10.4064/ap82-1-7