New variational principle and duality for an
abstract semilinear Dirichlet problem
Annales Polonici Mathematici, Tome 82 (2003) no. 1, pp. 51-60
A new variational principle and duality for the problem $Lu=\nabla G(u) $ are provided, where $L$ is a positive definite and selfadjoint operator and $\nabla G$ is a continuous gradient mapping such that $G$ satisfies superquadratic growth conditions. The results obtained may be applied to Dirichlet problems for both ordinary and partial differential equations.
Keywords:
variational principle duality problem nabla provided where positive definite selfadjoint operator nabla continuous gradient mapping satisfies superquadratic growth conditions results obtained may applied dirichlet problems ordinary partial differential equations
Affiliations des auteurs :
Marek Galewski  1
@article{10_4064_ap82_1_6,
author = {Marek Galewski},
title = {New variational principle and duality for an
abstract semilinear {Dirichlet} problem},
journal = {Annales Polonici Mathematici},
pages = {51--60},
year = {2003},
volume = {82},
number = {1},
doi = {10.4064/ap82-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-6/}
}
TY - JOUR AU - Marek Galewski TI - New variational principle and duality for an abstract semilinear Dirichlet problem JO - Annales Polonici Mathematici PY - 2003 SP - 51 EP - 60 VL - 82 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-6/ DO - 10.4064/ap82-1-6 LA - en ID - 10_4064_ap82_1_6 ER -
Marek Galewski. New variational principle and duality for an abstract semilinear Dirichlet problem. Annales Polonici Mathematici, Tome 82 (2003) no. 1, pp. 51-60. doi: 10.4064/ap82-1-6
Cité par Sources :