On the Euler characteristic of the real Milnor fibres of an analytic function
Annales Polonici Mathematici, Tome 82 (2003) no. 1, pp. 45-50.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The paper is concerned with the relations between real and complex topological invariants of germs of real-analytic functions. We give a formula for the Euler characteristic of the real Milnor fibres of a real-analytic germ in terms of the Milnor numbers of appropriate functions.
DOI : 10.4064/ap82-1-5
Keywords: paper concerned relations between real complex topological invariants germs real analytic functions formula euler characteristic real milnor fibres real analytic germ terms milnor numbers appropriate functions

Piotr Dudziński 1

1 Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-925 Gdańsk, Poland
@article{10_4064_ap82_1_5,
     author = {Piotr Dudzi\'nski},
     title = {On the {Euler} characteristic of the real {Milnor
} fibres of an analytic function},
     journal = {Annales Polonici Mathematici},
     pages = {45--50},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2003},
     doi = {10.4064/ap82-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-5/}
}
TY  - JOUR
AU  - Piotr Dudziński
TI  - On the Euler characteristic of the real Milnor
 fibres of an analytic function
JO  - Annales Polonici Mathematici
PY  - 2003
SP  - 45
EP  - 50
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-5/
DO  - 10.4064/ap82-1-5
LA  - en
ID  - 10_4064_ap82_1_5
ER  - 
%0 Journal Article
%A Piotr Dudziński
%T On the Euler characteristic of the real Milnor
 fibres of an analytic function
%J Annales Polonici Mathematici
%D 2003
%P 45-50
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-5/
%R 10.4064/ap82-1-5
%G en
%F 10_4064_ap82_1_5
Piotr Dudziński. On the Euler characteristic of the real Milnor
 fibres of an analytic function. Annales Polonici Mathematici, Tome 82 (2003) no. 1, pp. 45-50. doi : 10.4064/ap82-1-5. http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-5/

Cité par Sources :