Interval criteria for oscillation of second order
self-adjoint matrix differential systems
Annales Polonici Mathematici, Tome 82 (2003) no. 1, pp. 87-93
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
By employing the matrix Riccati technique and the integral averaging technique, new interval oscillation criteria are established for second-order matrix differential systems of the form $[P(t)Y']'+Q(t)Y=0$.
Keywords:
employing matrix riccati technique integral averaging technique interval oscillation criteria established second order matrix differential systems form
Affiliations des auteurs :
Qi-Ru Wang 1
@article{10_4064_ap82_1_10,
author = {Qi-Ru Wang},
title = {Interval criteria for oscillation of second order
self-adjoint matrix differential systems},
journal = {Annales Polonici Mathematici},
pages = {87--93},
publisher = {mathdoc},
volume = {82},
number = {1},
year = {2003},
doi = {10.4064/ap82-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-10/}
}
TY - JOUR AU - Qi-Ru Wang TI - Interval criteria for oscillation of second order self-adjoint matrix differential systems JO - Annales Polonici Mathematici PY - 2003 SP - 87 EP - 93 VL - 82 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-10/ DO - 10.4064/ap82-1-10 LA - en ID - 10_4064_ap82_1_10 ER -
%0 Journal Article %A Qi-Ru Wang %T Interval criteria for oscillation of second order self-adjoint matrix differential systems %J Annales Polonici Mathematici %D 2003 %P 87-93 %V 82 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-10/ %R 10.4064/ap82-1-10 %G en %F 10_4064_ap82_1_10
Qi-Ru Wang. Interval criteria for oscillation of second order self-adjoint matrix differential systems. Annales Polonici Mathematici, Tome 82 (2003) no. 1, pp. 87-93. doi: 10.4064/ap82-1-10
Cité par Sources :