Interval criteria for oscillation of second order self-adjoint matrix differential systems
Annales Polonici Mathematici, Tome 82 (2003) no. 1, pp. 87-93.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

By employing the matrix Riccati technique and the integral averaging technique, new interval oscillation criteria are established for second-order matrix differential systems of the form $[P(t)Y']'+Q(t)Y=0$.
DOI : 10.4064/ap82-1-10
Keywords: employing matrix riccati technique integral averaging technique interval oscillation criteria established second order matrix differential systems form

Qi-Ru Wang 1

1 Department of Mathematics Sun Yat-Sen (Zhongshan) University Guangzhou 510275, P.R. China
@article{10_4064_ap82_1_10,
     author = {Qi-Ru Wang},
     title = {Interval criteria for oscillation of second order
 self-adjoint matrix differential systems},
     journal = {Annales Polonici Mathematici},
     pages = {87--93},
     publisher = {mathdoc},
     volume = {82},
     number = {1},
     year = {2003},
     doi = {10.4064/ap82-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-10/}
}
TY  - JOUR
AU  - Qi-Ru Wang
TI  - Interval criteria for oscillation of second order
 self-adjoint matrix differential systems
JO  - Annales Polonici Mathematici
PY  - 2003
SP  - 87
EP  - 93
VL  - 82
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-10/
DO  - 10.4064/ap82-1-10
LA  - en
ID  - 10_4064_ap82_1_10
ER  - 
%0 Journal Article
%A Qi-Ru Wang
%T Interval criteria for oscillation of second order
 self-adjoint matrix differential systems
%J Annales Polonici Mathematici
%D 2003
%P 87-93
%V 82
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-10/
%R 10.4064/ap82-1-10
%G en
%F 10_4064_ap82_1_10
Qi-Ru Wang. Interval criteria for oscillation of second order
 self-adjoint matrix differential systems. Annales Polonici Mathematici, Tome 82 (2003) no. 1, pp. 87-93. doi : 10.4064/ap82-1-10. http://geodesic.mathdoc.fr/articles/10.4064/ap82-1-10/

Cité par Sources :