The Kneser property for the abstract Cauchy problem
Annales Polonici Mathematici, Tome 81 (2003) no. 2, pp. 167-181.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish existence of mild solutions for the semilinear first order functional abstract Cauchy problem and we prove that the set of mild solutions of this problem is connected in the space of continuous functions.
DOI : 10.4064/ap81-2-7
Keywords: establish existence mild solutions semilinear first order functional abstract cauchy problem prove set mild solutions problem connected space continuous functions

Hernán R. Henríquez 1 ; Genaro Castillo G. 2

1 Departamento de Matemática Universidad de Santiago Casilla 307, Correo 2 Santiago, Chile
2 Departamento de Matemática Universidad de Talca Talca, Chile
@article{10_4064_ap81_2_7,
     author = {Hern\'an R. Henr{\'\i}quez and Genaro Castillo G.},
     title = {The {Kneser} property for the abstract {Cauchy} problem},
     journal = {Annales Polonici Mathematici},
     pages = {167--181},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2003},
     doi = {10.4064/ap81-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-7/}
}
TY  - JOUR
AU  - Hernán R. Henríquez
AU  - Genaro Castillo G.
TI  - The Kneser property for the abstract Cauchy problem
JO  - Annales Polonici Mathematici
PY  - 2003
SP  - 167
EP  - 181
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-7/
DO  - 10.4064/ap81-2-7
LA  - en
ID  - 10_4064_ap81_2_7
ER  - 
%0 Journal Article
%A Hernán R. Henríquez
%A Genaro Castillo G.
%T The Kneser property for the abstract Cauchy problem
%J Annales Polonici Mathematici
%D 2003
%P 167-181
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-7/
%R 10.4064/ap81-2-7
%G en
%F 10_4064_ap81_2_7
Hernán R. Henríquez; Genaro Castillo G. The Kneser property for the abstract Cauchy problem. Annales Polonici Mathematici, Tome 81 (2003) no. 2, pp. 167-181. doi : 10.4064/ap81-2-7. http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-7/

Cité par Sources :