Non-existence of some natural operators on connections
Annales Polonici Mathematici, Tome 81 (2003) no. 2, pp. 157-166
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $n,r,k$ be natural numbers such that $n\geq k+1$. Non-existence of natural operators
$C^r_0\rightsquigarrow
Q(\mathop {\rm reg}\nolimits T^r_k\to K^r_k)$ and $C^r_0\rightsquigarrow
Q(\mathop {\rm reg}\nolimits T^{r*}_k\to K^{r*}_k)$ over $n$-manifolds is proved. Some generalizations are obtained.
Keywords:
natural numbers geq non existence natural operators rightsquigarrow mathop reg nolimits rightsquigarrow mathop reg nolimits r* r* n manifolds proved generalizations obtained
Affiliations des auteurs :
W. M. Mikulski 1
@article{10_4064_ap81_2_6,
author = {W. M. Mikulski},
title = {Non-existence of some natural operators on connections},
journal = {Annales Polonici Mathematici},
pages = {157--166},
year = {2003},
volume = {81},
number = {2},
doi = {10.4064/ap81-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-6/}
}
W. M. Mikulski. Non-existence of some natural operators on connections. Annales Polonici Mathematici, Tome 81 (2003) no. 2, pp. 157-166. doi: 10.4064/ap81-2-6
Cité par Sources :