Théorèmes de préparation Gevrey
et étude de certaines applications formelles
Annales Polonici Mathematici, Tome 81 (2003) no. 2, pp. 139-156
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We consider subrings $A$ of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove preparation theorems of Malgrange type in these rings. As a consequence we study maps $F$ from ${{\mathbb C}}^{s}$ to ${{\mathbb C}}^{p}$ without constant term such that the rank of the Jacobian matrix of $F$ is equal to 1. Let ${\cal A}$ be a formal power series. If $F$ is a holomorphic map, the following result is well known: ${\cal A}\circ F$ is analytic implies there exists a convergent power series
$\, \widetilde { \!{\cal A}\, }$ such that ${\cal A}\circ F= \, \widetilde {\! {\cal A}\, }\circ F.$ We get similar results when the map $F$ is no longer holomorphic.
Mots-clés :
consider subrings ring formal power series defined growth conditions coefficients instance gevrey conditions prove preparation theorems malgrange type these rings consequence study maps mathbb mathbb without constant term rank jacobian matrix equal cal formal power series holomorphic map following result known cal circ analytic implies there exists convergent power series widetilde cal cal circ widetilde cal circ get similar results map longer holomorphic
Affiliations des auteurs :
Augustin Mouze 1
@article{10_4064_ap81_2_5,
author = {Augustin Mouze},
title = {Th\'eor\`emes de pr\'eparation {Gevrey
} et \'etude de certaines applications formelles},
journal = {Annales Polonici Mathematici},
pages = {139--156},
publisher = {mathdoc},
volume = {81},
number = {2},
year = {2003},
doi = {10.4064/ap81-2-5},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-5/}
}
TY - JOUR AU - Augustin Mouze TI - Théorèmes de préparation Gevrey et étude de certaines applications formelles JO - Annales Polonici Mathematici PY - 2003 SP - 139 EP - 156 VL - 81 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-5/ DO - 10.4064/ap81-2-5 LA - fr ID - 10_4064_ap81_2_5 ER -
Augustin Mouze. Théorèmes de préparation Gevrey et étude de certaines applications formelles. Annales Polonici Mathematici, Tome 81 (2003) no. 2, pp. 139-156. doi: 10.4064/ap81-2-5
Cité par Sources :