Unicity theorems for meromorphic functions that share three values
Annales Polonici Mathematici, Tome 81 (2003) no. 2, pp. 131-138.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We deal with the problem of uniqueness of meromorphic functions sharing three values, and obtain several results which improve and extend some theorems of M. Ozawa, H. Ueda, H. X. Yi and other authors. We provide examples to show that results are sharp.
DOI : 10.4064/ap81-2-4
Keywords: problem uniqueness meromorphic functions sharing three values obtain several results which improve extend theorems ozawa ueda other authors provide examples results sharp

Wei-Ran Lü 1 ; Hong-Xun Yi 1

1 Department of Mathematics Shandong University Jinan, Shandong 250100 People's Republic of China
@article{10_4064_ap81_2_4,
     author = {Wei-Ran L\"u and Hong-Xun Yi},
     title = {Unicity theorems for meromorphic
 functions that share three values},
     journal = {Annales Polonici Mathematici},
     pages = {131--138},
     publisher = {mathdoc},
     volume = {81},
     number = {2},
     year = {2003},
     doi = {10.4064/ap81-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-4/}
}
TY  - JOUR
AU  - Wei-Ran Lü
AU  - Hong-Xun Yi
TI  - Unicity theorems for meromorphic
 functions that share three values
JO  - Annales Polonici Mathematici
PY  - 2003
SP  - 131
EP  - 138
VL  - 81
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-4/
DO  - 10.4064/ap81-2-4
LA  - en
ID  - 10_4064_ap81_2_4
ER  - 
%0 Journal Article
%A Wei-Ran Lü
%A Hong-Xun Yi
%T Unicity theorems for meromorphic
 functions that share three values
%J Annales Polonici Mathematici
%D 2003
%P 131-138
%V 81
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-4/
%R 10.4064/ap81-2-4
%G en
%F 10_4064_ap81_2_4
Wei-Ran Lü; Hong-Xun Yi. Unicity theorems for meromorphic
 functions that share three values. Annales Polonici Mathematici, Tome 81 (2003) no. 2, pp. 131-138. doi : 10.4064/ap81-2-4. http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-4/

Cité par Sources :