On oscillation of solutions of forced nonlinear
neutral differential equations of higher order II
Annales Polonici Mathematici, Tome 81 (2003) no. 2, pp. 101-110
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Sufficient conditions are obtained so that every solution of $$ [y(t) - p(t) y(t-\tau )]^{(n)} + Q(t) G (y(t-\sigma )) = f(t) $$ where $n\ge 2$, $p, f\in C([0, \infty ), {{\mathbb R}})$, $Q \in C ([0, \infty ), [0, \infty ))$, $G \in C({{\mathbb R}}, {{\mathbb R}}), \tau > 0$ and $\sigma \ge 0$, oscillates or tends to zero as $t\to \infty $. Various ranges of $p(t)$ are considered. In order to accommodate sublinear cases, it is assumed that $\int _0^{\infty }Q(t)\, dt=\infty $. Through examples it is shown that if the condition on $Q$ is weakened, then there are sublinear equations whose solutions tend to $\pm \infty $ as $t\to \infty $.
Keywords:
sufficient conditions obtained every solution t tau t sigma where infty mathbb infty infty mathbb mathbb tau sigma oscillates tends zero infty various ranges considered order accommodate sublinear cases assumed int infty infty through examples shown condition weakened there sublinear equations whose solutions tend infty infty
Affiliations des auteurs :
N. Parhi 1 ; R. N. Rath 2
@article{10_4064_ap81_2_1,
author = {N. Parhi and R. N. Rath},
title = {On oscillation of solutions of forced nonlinear
neutral differential equations of higher order {II}},
journal = {Annales Polonici Mathematici},
pages = {101--110},
year = {2003},
volume = {81},
number = {2},
doi = {10.4064/ap81-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-1/}
}
TY - JOUR AU - N. Parhi AU - R. N. Rath TI - On oscillation of solutions of forced nonlinear neutral differential equations of higher order II JO - Annales Polonici Mathematici PY - 2003 SP - 101 EP - 110 VL - 81 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-1/ DO - 10.4064/ap81-2-1 LA - en ID - 10_4064_ap81_2_1 ER -
%0 Journal Article %A N. Parhi %A R. N. Rath %T On oscillation of solutions of forced nonlinear neutral differential equations of higher order II %J Annales Polonici Mathematici %D 2003 %P 101-110 %V 81 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/ap81-2-1/ %R 10.4064/ap81-2-1 %G en %F 10_4064_ap81_2_1
N. Parhi; R. N. Rath. On oscillation of solutions of forced nonlinear neutral differential equations of higher order II. Annales Polonici Mathematici, Tome 81 (2003) no. 2, pp. 101-110. doi: 10.4064/ap81-2-1
Cité par Sources :