Existence of positive solutions for a nonlinear fourth order boundary value problem
Annales Polonici Mathematici, Tome 81 (2003) no. 1, pp. 79-84.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the existence of positive solutions of the nonlinear fourth order problem $$ \eqalign{ ^{(4)}(x)=\lambda a(x)f(u(x)),\cr (0)=u'(0)=u' '(1)=u' ' '(1)=0,\cr}$$ where $a: [0,1]\rightarrow \mathbb R$ may change sign, $f(0)>0$, and $\lambda>0$ is sufficiently small. Our approach is based on the Leray–Schauder fixed point theorem.
DOI : 10.4064/ap81-1-7
Keywords: study existence positive solutions nonlinear fourth order problem eqalign lambda u where rightarrow mathbb may change sign lambda sufficiently small approach based leray schauder fixed point theorem

Ruyun Ma 1

1 Department of Mathematics Northwest Normal University Lanzhou 730070, Gansu, P. R. China
@article{10_4064_ap81_1_7,
     author = {Ruyun Ma},
     title = {Existence of positive solutions for a nonlinear fourth order
 boundary value problem},
     journal = {Annales Polonici Mathematici},
     pages = {79--84},
     publisher = {mathdoc},
     volume = {81},
     number = {1},
     year = {2003},
     doi = {10.4064/ap81-1-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap81-1-7/}
}
TY  - JOUR
AU  - Ruyun Ma
TI  - Existence of positive solutions for a nonlinear fourth order
 boundary value problem
JO  - Annales Polonici Mathematici
PY  - 2003
SP  - 79
EP  - 84
VL  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap81-1-7/
DO  - 10.4064/ap81-1-7
LA  - en
ID  - 10_4064_ap81_1_7
ER  - 
%0 Journal Article
%A Ruyun Ma
%T Existence of positive solutions for a nonlinear fourth order
 boundary value problem
%J Annales Polonici Mathematici
%D 2003
%P 79-84
%V 81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap81-1-7/
%R 10.4064/ap81-1-7
%G en
%F 10_4064_ap81_1_7
Ruyun Ma. Existence of positive solutions for a nonlinear fourth order
 boundary value problem. Annales Polonici Mathematici, Tome 81 (2003) no. 1, pp. 79-84. doi : 10.4064/ap81-1-7. http://geodesic.mathdoc.fr/articles/10.4064/ap81-1-7/

Cité par Sources :