Existence of positive solutions for a nonlinear fourth order
boundary value problem
Annales Polonici Mathematici, Tome 81 (2003) no. 1, pp. 79-84
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the existence of positive
solutions of the nonlinear
fourth order problem
$$
\eqalign{
^{(4)}(x)=\lambda a(x)f(u(x)),\cr
(0)=u'(0)=u' '(1)=u' ' '(1)=0,\cr}$$
where $a: [0,1]\rightarrow \mathbb R$ may change sign,
$f(0)>0$, and $\lambda>0$ is sufficiently small. Our approach is
based on the Leray–Schauder
fixed point theorem.
Keywords:
study existence positive solutions nonlinear fourth order problem eqalign lambda u where rightarrow mathbb may change sign lambda sufficiently small approach based leray schauder fixed point theorem
Affiliations des auteurs :
Ruyun Ma 1
@article{10_4064_ap81_1_7,
author = {Ruyun Ma},
title = {Existence of positive solutions for a nonlinear fourth order
boundary value problem},
journal = {Annales Polonici Mathematici},
pages = {79--84},
publisher = {mathdoc},
volume = {81},
number = {1},
year = {2003},
doi = {10.4064/ap81-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap81-1-7/}
}
TY - JOUR AU - Ruyun Ma TI - Existence of positive solutions for a nonlinear fourth order boundary value problem JO - Annales Polonici Mathematici PY - 2003 SP - 79 EP - 84 VL - 81 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap81-1-7/ DO - 10.4064/ap81-1-7 LA - en ID - 10_4064_ap81_1_7 ER -
Ruyun Ma. Existence of positive solutions for a nonlinear fourth order boundary value problem. Annales Polonici Mathematici, Tome 81 (2003) no. 1, pp. 79-84. doi: 10.4064/ap81-1-7
Cité par Sources :