Estimates for the Bergman kernel and
metric of convex domains in ${\Bbb C}^n$
Annales Polonici Mathematici, Tome 81 (2003) no. 1, pp. 73-78
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Sharp geometrical lower and upper estimates are obtained for the Bergman kernel on the diagonal of a convex domain $D\subset {{\mathbb C}}^n$ which does not contain complex lines. It is also proved that the ratio of the Bergman and Carathéodory metrics of $D$ does not exceed a constant depending only on $n$.
Keywords:
sharp geometrical lower upper estimates obtained bergman kernel diagonal convex domain subset mathbb which does contain complex lines proved ratio bergman carath odory metrics does exceed constant depending only
Affiliations des auteurs :
Nikolai Nikolov 1 ; Peter Pflug 2
@article{10_4064_ap81_1_6,
author = {Nikolai Nikolov and Peter Pflug},
title = {Estimates for the {Bergman} kernel and
metric of convex domains in ${\Bbb C}^n$},
journal = {Annales Polonici Mathematici},
pages = {73--78},
year = {2003},
volume = {81},
number = {1},
doi = {10.4064/ap81-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap81-1-6/}
}
TY - JOUR
AU - Nikolai Nikolov
AU - Peter Pflug
TI - Estimates for the Bergman kernel and
metric of convex domains in ${\Bbb C}^n$
JO - Annales Polonici Mathematici
PY - 2003
SP - 73
EP - 78
VL - 81
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap81-1-6/
DO - 10.4064/ap81-1-6
LA - en
ID - 10_4064_ap81_1_6
ER -
Nikolai Nikolov; Peter Pflug. Estimates for the Bergman kernel and
metric of convex domains in ${\Bbb C}^n$. Annales Polonici Mathematici, Tome 81 (2003) no. 1, pp. 73-78. doi: 10.4064/ap81-1-6
Cité par Sources :