Completeness of the inner $k$th Reiffen pseudometric
Annales Polonici Mathematici, Tome 79 (2002) no. 3, pp. 277-288.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give an example of a Zalcman-type domain in ${{\mathbb C}}$ which is complete with respect to the integrated form of the $(k+1)$st Reiffen pseudometric, but not complete with respect to the $k$th one.
DOI : 10.4064/ap79-3-5
Keywords: example zalcman type domain mathbb which complete respect integrated form reiffen pseudometric complete respect kth

Paweł Zapałowski 1

1 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_ap79_3_5,
     author = {Pawe{\l} Zapa{\l}owski},
     title = {Completeness of the inner $k$th {Reiffen} pseudometric},
     journal = {Annales Polonici Mathematici},
     pages = {277--288},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2002},
     doi = {10.4064/ap79-3-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-3-5/}
}
TY  - JOUR
AU  - Paweł Zapałowski
TI  - Completeness of the inner $k$th Reiffen pseudometric
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 277
EP  - 288
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap79-3-5/
DO  - 10.4064/ap79-3-5
LA  - en
ID  - 10_4064_ap79_3_5
ER  - 
%0 Journal Article
%A Paweł Zapałowski
%T Completeness of the inner $k$th Reiffen pseudometric
%J Annales Polonici Mathematici
%D 2002
%P 277-288
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap79-3-5/
%R 10.4064/ap79-3-5
%G en
%F 10_4064_ap79_3_5
Paweł Zapałowski. Completeness of the inner $k$th Reiffen pseudometric. Annales Polonici Mathematici, Tome 79 (2002) no. 3, pp. 277-288. doi : 10.4064/ap79-3-5. http://geodesic.mathdoc.fr/articles/10.4064/ap79-3-5/

Cité par Sources :