Existence of positive solutions
for second order $m$-point boundary value problems
Annales Polonici Mathematici, Tome 79 (2002) no. 3, pp. 265-276
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $\alpha, \beta, \gamma, \delta \geq 0$ and
$\varrho:=\gamma\beta+\alpha\gamma+\alpha\delta>0$.
Let $\psi(t)=\beta+\alpha t$,
$\phi(t)=\gamma+\delta -\gamma t$, $t\in [0,1]$.
We study the existence of positive solutions for the
$m$-point boundary value problem
$$\cases{
u' ' + h(t) f(u)=0, \quad\ 0 t 1 ,\cr
\alpha u(0)- \beta u'(0)=\sum^{m-2}_{i=1}a_i u(\xi_i),\cr
\gamma u(1)+\delta u'(1)=\sum^{m-2}_{i=1}b_i u(\xi_i),\cr
}
$$
where $\xi_i\in (0,1)$, $a_i, b_i\in (0,\infty)$
(for $i\in \{1,\ldots, m-2\}$) are given constants satisfying
$\varrho -\sum^{m-2}_{i=1} a_i \phi(\xi_i)>0$,
$\varrho -\sum^{m-2}_{i=1} b_i \psi(\xi_i)>0$ and
$${\mit\Delta}:=
\left|
\matrix{
-\sum^{m-2}_{i=1}a_i\psi(\xi_i)
\varrho -\sum^{m-2}_{i=1}a_i\phi(\xi_i)\cr
\varrho -\sum^{m-2}_{i=1}b_i\psi(\xi_i)
-\sum^{m-2}_{i=1}b_i\phi(\xi_i)\cr}
\right| 0.
$$
We show the existence of positive solutions if $f$ is either
superlinear or sublinear by a simple application of a fixed point theorem
in cones. Our result extends a result established by Erbe and Wang
for two-point BVPs and a result established by
the author for three-point BVPs.
Keywords:
alpha beta gamma delta geq varrho gamma beta alpha gamma alpha delta psi beta alpha phi gamma delta gamma study existence positive solutions m point boundary value problem cases quad alpha beta sum m gamma delta sum m where infty ldots m given constants satisfying varrho sum m phi varrho sum m psi mit delta matrix sum m psi varrho sum m phi varrho sum m psi sum m phi right existence positive solutions either superlinear sublinear simple application fixed point theorem cones result extends result established erbe wang two point bvps result established author three point bvps
Affiliations des auteurs :
Ruyun Ma 1
@article{10_4064_ap79_3_4,
author = {Ruyun Ma},
title = {Existence of positive solutions
for second order $m$-point boundary value problems},
journal = {Annales Polonici Mathematici},
pages = {265--276},
publisher = {mathdoc},
volume = {79},
number = {3},
year = {2002},
doi = {10.4064/ap79-3-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-3-4/}
}
TY - JOUR AU - Ruyun Ma TI - Existence of positive solutions for second order $m$-point boundary value problems JO - Annales Polonici Mathematici PY - 2002 SP - 265 EP - 276 VL - 79 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap79-3-4/ DO - 10.4064/ap79-3-4 LA - en ID - 10_4064_ap79_3_4 ER -
Ruyun Ma. Existence of positive solutions for second order $m$-point boundary value problems. Annales Polonici Mathematici, Tome 79 (2002) no. 3, pp. 265-276. doi: 10.4064/ap79-3-4
Cité par Sources :