Existence of positive solutions for second order $m$-point boundary value problems
Annales Polonici Mathematici, Tome 79 (2002) no. 3, pp. 265-276.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $\alpha, \beta, \gamma, \delta \geq 0$ and $\varrho:=\gamma\beta+\alpha\gamma+\alpha\delta>0$. Let $\psi(t)=\beta+\alpha t$, $\phi(t)=\gamma+\delta -\gamma t$, $t\in [0,1]$. We study the existence of positive solutions for the $m$-point boundary value problem $$\cases{ u' ' + h(t) f(u)=0, \quad\ 0 t 1 ,\cr \alpha u(0)- \beta u'(0)=\sum^{m-2}_{i=1}a_i u(\xi_i),\cr \gamma u(1)+\delta u'(1)=\sum^{m-2}_{i=1}b_i u(\xi_i),\cr } $$ where $\xi_i\in (0,1)$, $a_i, b_i\in (0,\infty)$ (for $i\in \{1,\ldots, m-2\}$) are given constants satisfying $\varrho -\sum^{m-2}_{i=1} a_i \phi(\xi_i)>0$, $\varrho -\sum^{m-2}_{i=1} b_i \psi(\xi_i)>0$ and $${\mit\Delta}:= \left| \matrix{ -\sum^{m-2}_{i=1}a_i\psi(\xi_i) \varrho -\sum^{m-2}_{i=1}a_i\phi(\xi_i)\cr \varrho -\sum^{m-2}_{i=1}b_i\psi(\xi_i) -\sum^{m-2}_{i=1}b_i\phi(\xi_i)\cr} \right| 0. $$ We show the existence of positive solutions if $f$ is either superlinear or sublinear by a simple application of a fixed point theorem in cones. Our result extends a result established by Erbe and Wang for two-point BVPs and a result established by the author for three-point BVPs.
DOI : 10.4064/ap79-3-4
Keywords: alpha beta gamma delta geq varrho gamma beta alpha gamma alpha delta psi beta alpha phi gamma delta gamma study existence positive solutions m point boundary value problem cases quad alpha beta sum m gamma delta sum m where infty ldots m given constants satisfying varrho sum m phi varrho sum m psi mit delta matrix sum m psi varrho sum m phi varrho sum m psi sum m phi right existence positive solutions either superlinear sublinear simple application fixed point theorem cones result extends result established erbe wang two point bvps result established author three point bvps

Ruyun Ma 1

1 Department of Mathematics Northwest Normal University Lanzhou 730070, Gansu, People's Republic of China
@article{10_4064_ap79_3_4,
     author = {Ruyun Ma},
     title = {Existence of positive solutions
  for second order $m$-point boundary value problems},
     journal = {Annales Polonici Mathematici},
     pages = {265--276},
     publisher = {mathdoc},
     volume = {79},
     number = {3},
     year = {2002},
     doi = {10.4064/ap79-3-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-3-4/}
}
TY  - JOUR
AU  - Ruyun Ma
TI  - Existence of positive solutions
  for second order $m$-point boundary value problems
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 265
EP  - 276
VL  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap79-3-4/
DO  - 10.4064/ap79-3-4
LA  - en
ID  - 10_4064_ap79_3_4
ER  - 
%0 Journal Article
%A Ruyun Ma
%T Existence of positive solutions
  for second order $m$-point boundary value problems
%J Annales Polonici Mathematici
%D 2002
%P 265-276
%V 79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap79-3-4/
%R 10.4064/ap79-3-4
%G en
%F 10_4064_ap79_3_4
Ruyun Ma. Existence of positive solutions
  for second order $m$-point boundary value problems. Annales Polonici Mathematici, Tome 79 (2002) no. 3, pp. 265-276. doi : 10.4064/ap79-3-4. http://geodesic.mathdoc.fr/articles/10.4064/ap79-3-4/

Cité par Sources :