Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Marino Badiale 1
@article{10_4064_ap79_2_5, author = {Marino Badiale}, title = {Infinitely many solutions for a semilinear elliptic equation in ${\Bbb R}^N$ via a perturbation method}, journal = {Annales Polonici Mathematici}, pages = {139--156}, publisher = {mathdoc}, volume = {79}, number = {2}, year = {2002}, doi = {10.4064/ap79-2-5}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-5/} }
TY - JOUR AU - Marino Badiale TI - Infinitely many solutions for a semilinear elliptic equation in ${\Bbb R}^N$ via a perturbation method JO - Annales Polonici Mathematici PY - 2002 SP - 139 EP - 156 VL - 79 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-5/ DO - 10.4064/ap79-2-5 LA - en ID - 10_4064_ap79_2_5 ER -
%0 Journal Article %A Marino Badiale %T Infinitely many solutions for a semilinear elliptic equation in ${\Bbb R}^N$ via a perturbation method %J Annales Polonici Mathematici %D 2002 %P 139-156 %V 79 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-5/ %R 10.4064/ap79-2-5 %G en %F 10_4064_ap79_2_5
Marino Badiale. Infinitely many solutions for a semilinear elliptic equation in ${\Bbb R}^N$ via a perturbation method. Annales Polonici Mathematici, Tome 79 (2002) no. 2, pp. 139-156. doi : 10.4064/ap79-2-5. http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-5/
Cité par Sources :