Infinitely many solutions for a semilinear
elliptic equation in ${\Bbb R}^N$ via a perturbation method
Annales Polonici Mathematici, Tome 79 (2002) no. 2, pp. 139-156
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce a method to treat a semilinear elliptic equation in ${{{\mathbb R}}^N}$ (see equation (1) below). This method is of a perturbative nature. It permits us to skip the problem of lack of compactness of ${{{\mathbb R}}^N}$ but requires an oscillatory behavior of the potential $b$.
Keywords:
introduce method treat semilinear elliptic equation mathbb see equation below method perturbative nature permits skip problem lack compactness mathbb requires oscillatory behavior potential
Affiliations des auteurs :
Marino Badiale 1
@article{10_4064_ap79_2_5,
author = {Marino Badiale},
title = {Infinitely many solutions for a semilinear
elliptic equation in ${\Bbb R}^N$ via a perturbation method},
journal = {Annales Polonici Mathematici},
pages = {139--156},
publisher = {mathdoc},
volume = {79},
number = {2},
year = {2002},
doi = {10.4064/ap79-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-5/}
}
TY - JOUR
AU - Marino Badiale
TI - Infinitely many solutions for a semilinear
elliptic equation in ${\Bbb R}^N$ via a perturbation method
JO - Annales Polonici Mathematici
PY - 2002
SP - 139
EP - 156
VL - 79
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-5/
DO - 10.4064/ap79-2-5
LA - en
ID - 10_4064_ap79_2_5
ER -
%0 Journal Article
%A Marino Badiale
%T Infinitely many solutions for a semilinear
elliptic equation in ${\Bbb R}^N$ via a perturbation method
%J Annales Polonici Mathematici
%D 2002
%P 139-156
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-5/
%R 10.4064/ap79-2-5
%G en
%F 10_4064_ap79_2_5
Marino Badiale. Infinitely many solutions for a semilinear
elliptic equation in ${\Bbb R}^N$ via a perturbation method. Annales Polonici Mathematici, Tome 79 (2002) no. 2, pp. 139-156. doi: 10.4064/ap79-2-5
Cité par Sources :