Infinitely many solutions for a semilinear elliptic equation in ${\Bbb R}^N$ via a perturbation method
Annales Polonici Mathematici, Tome 79 (2002) no. 2, pp. 139-156.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce a method to treat a semilinear elliptic equation in ${{{\mathbb R}}^N}$ (see equation (1) below). This method is of a perturbative nature. It permits us to skip the problem of lack of compactness of ${{{\mathbb R}}^N}$ but requires an oscillatory behavior of the potential $b$.
DOI : 10.4064/ap79-2-5
Keywords: introduce method treat semilinear elliptic equation mathbb see equation below method perturbative nature permits skip problem lack compactness mathbb requires oscillatory behavior potential

Marino Badiale 1

1 Dipartimento di Matematica Università di Torino via Carlo Alberto 10 10123 Torino, Italy
@article{10_4064_ap79_2_5,
     author = {Marino Badiale},
     title = {Infinitely many solutions for a semilinear
 elliptic equation in ${\Bbb R}^N$ via a perturbation method},
     journal = {Annales Polonici Mathematici},
     pages = {139--156},
     publisher = {mathdoc},
     volume = {79},
     number = {2},
     year = {2002},
     doi = {10.4064/ap79-2-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-5/}
}
TY  - JOUR
AU  - Marino Badiale
TI  - Infinitely many solutions for a semilinear
 elliptic equation in ${\Bbb R}^N$ via a perturbation method
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 139
EP  - 156
VL  - 79
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-5/
DO  - 10.4064/ap79-2-5
LA  - en
ID  - 10_4064_ap79_2_5
ER  - 
%0 Journal Article
%A Marino Badiale
%T Infinitely many solutions for a semilinear
 elliptic equation in ${\Bbb R}^N$ via a perturbation method
%J Annales Polonici Mathematici
%D 2002
%P 139-156
%V 79
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-5/
%R 10.4064/ap79-2-5
%G en
%F 10_4064_ap79_2_5
Marino Badiale. Infinitely many solutions for a semilinear
 elliptic equation in ${\Bbb R}^N$ via a perturbation method. Annales Polonici Mathematici, Tome 79 (2002) no. 2, pp. 139-156. doi : 10.4064/ap79-2-5. http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-5/

Cité par Sources :