Periodic solutions of dissipative dynamical systems
with singular potential and $p$-Laplacian
Annales Polonici Mathematici, Tome 79 (2002) no. 2, pp. 109-120
By using the topological degree theory and some analytic methods, we consider the periodic boundary value problem for the singular dissipative dynamical systems with $p$-Laplacian: $(\phi _p(x'))'+{d\over dt}\mathop {\rm grad}\nolimits F(x)+\mathop {\rm grad}\nolimits G(x)=e(t)$, $x(0)=x(T)$, $x'(0)=x'(T)$. Sufficient conditions to guarantee the existence of solutions are obtained under no restriction on the damping forces ${d\over dt}\mathop {\rm grad}\nolimits F(x)$.
Keywords:
using topological degree theory analytic methods consider periodic boundary value problem singular dissipative dynamical systems p laplacian phi mathop grad nolimits mathop grad nolimits sufficient conditions guarantee existence solutions obtained under restriction damping forces mathop grad nolimits
Affiliations des auteurs :
Bing Liu  1
@article{10_4064_ap79_2_2,
author = {Bing Liu},
title = {Periodic solutions of dissipative dynamical systems
with singular potential and $p${-Laplacian}},
journal = {Annales Polonici Mathematici},
pages = {109--120},
year = {2002},
volume = {79},
number = {2},
doi = {10.4064/ap79-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-2/}
}
TY - JOUR AU - Bing Liu TI - Periodic solutions of dissipative dynamical systems with singular potential and $p$-Laplacian JO - Annales Polonici Mathematici PY - 2002 SP - 109 EP - 120 VL - 79 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-2/ DO - 10.4064/ap79-2-2 LA - en ID - 10_4064_ap79_2_2 ER -
Bing Liu. Periodic solutions of dissipative dynamical systems with singular potential and $p$-Laplacian. Annales Polonici Mathematici, Tome 79 (2002) no. 2, pp. 109-120. doi: 10.4064/ap79-2-2
Cité par Sources :