Proper holomorphic self-mappings
of the minimal ball
Annales Polonici Mathematici, Tome 79 (2002) no. 2, pp. 97-107
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The purpose of this paper is to prove that proper holomorphic self-mappings of the minimal ball are biholomorphic. The proof uses the scaling technique applied at a singular point and relies on the fact that a proper holomorphic mapping $f: D\rightarrow {\mit \Omega }$ with branch locus $V_f$ is factored by automorphisms if and only if $f_{*}(\pi _1(D\setminus f^{-1} (f(V_f)), x))$ is a normal subgroup of $\pi _1({\mit \Omega } \setminus f(V_f), b)$ for some $b\in {\mit \Omega } \setminus f(V_f)$ and $x\in f^{-1}(b)$.
Keywords:
purpose paper prove proper holomorphic self mappings minimal ball biholomorphic proof uses scaling technique applied singular point relies proper holomorphic mapping rightarrow mit omega branch locus factored automorphisms only * setminus normal subgroup mit omega setminus mit omega setminus
Affiliations des auteurs :
Nabil Ourimi 1
@article{10_4064_ap79_2_1,
author = {Nabil Ourimi},
title = {Proper holomorphic self-mappings
of the minimal ball},
journal = {Annales Polonici Mathematici},
pages = {97--107},
publisher = {mathdoc},
volume = {79},
number = {2},
year = {2002},
doi = {10.4064/ap79-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-2-1/}
}
Nabil Ourimi. Proper holomorphic self-mappings of the minimal ball. Annales Polonici Mathematici, Tome 79 (2002) no. 2, pp. 97-107. doi: 10.4064/ap79-2-1
Cité par Sources :