Asymptotics for quasilinear elliptic
non-positone problems
Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 85-95
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
In the recent years, many results have been established on
positive solutions for boundary value
problems of the form
$$\displaylines{ -\mathop{\rm div}\nolimits (|\nabla u(x)|^{p-2}\nabla u(x))=\lambda f(u(x))\
\quad \hbox{in }\ {\mit\Omega}, \cr
u(x)=0\quad\ \hbox{on }\ \partial{\mit\Omega}, \cr}$$
where $ \lambda>0$, ${\mit\Omega} $ is a bounded smooth domain and $ f(s)\geq 0 $
for $ s\geq 0$. In this paper, a priori estimates of positive radial
solutions are presented when $ N > p>1$,
${\mit\Omega} $ is an $N$-ball or an annulus and
$ f\in C^1(0,\infty)\cup C^0([0,\infty))$ with $f(0)0$ (non-positone).
Keywords:
recent years many results have established positive solutions boundary value problems form displaylines mathop div nolimits nabla p nabla lambda quad hbox mit omega quad hbox partial mit omega where lambda mit omega bounded smooth domain geq geq paper priori estimates positive radial solutions presented mit omega n ball annulus infty cup infty non positone
Affiliations des auteurs :
Zuodong Yang 1 ; Qishao Lu 1
@article{10_4064_ap79_1_7,
author = {Zuodong Yang and Qishao Lu},
title = {Asymptotics for quasilinear elliptic
non-positone problems},
journal = {Annales Polonici Mathematici},
pages = {85--95},
publisher = {mathdoc},
volume = {79},
number = {1},
year = {2002},
doi = {10.4064/ap79-1-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-7/}
}
TY - JOUR AU - Zuodong Yang AU - Qishao Lu TI - Asymptotics for quasilinear elliptic non-positone problems JO - Annales Polonici Mathematici PY - 2002 SP - 85 EP - 95 VL - 79 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-7/ DO - 10.4064/ap79-1-7 LA - en ID - 10_4064_ap79_1_7 ER -
Zuodong Yang; Qishao Lu. Asymptotics for quasilinear elliptic non-positone problems. Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 85-95. doi: 10.4064/ap79-1-7
Cité par Sources :