Concave domains with trivial biholomorphic invariants
Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 63-66
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is proved that if $F$ is a convex closed set in ${\mathbb C}^n$, $n\ge 2,$
containing at most one $(n-1)$-dimensional complex hyperplane, then the
Kobayashi metric and the Lempert function of ${\mathbb C}^n\setminus F$ identically vanish.
Keywords:
proved convex closed set mathbb containing n dimensional complex hyperplane kobayashi metric lempert function mathbb setminus identically vanish
Affiliations des auteurs :
Witold Jarnicki 1 ; Nikolai Nikolov 2
@article{10_4064_ap79_1_5,
author = {Witold Jarnicki and Nikolai Nikolov},
title = {Concave domains with trivial biholomorphic invariants},
journal = {Annales Polonici Mathematici},
pages = {63--66},
publisher = {mathdoc},
volume = {79},
number = {1},
year = {2002},
doi = {10.4064/ap79-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-5/}
}
TY - JOUR AU - Witold Jarnicki AU - Nikolai Nikolov TI - Concave domains with trivial biholomorphic invariants JO - Annales Polonici Mathematici PY - 2002 SP - 63 EP - 66 VL - 79 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-5/ DO - 10.4064/ap79-1-5 LA - en ID - 10_4064_ap79_1_5 ER -
Witold Jarnicki; Nikolai Nikolov. Concave domains with trivial biholomorphic invariants. Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 63-66. doi: 10.4064/ap79-1-5
Cité par Sources :