Concave domains with trivial biholomorphic invariants
Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 63-66.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that if $F$ is a convex closed set in ${\mathbb C}^n$, $n\ge 2,$ containing at most one $(n-1)$-dimensional complex hyperplane, then the Kobayashi metric and the Lempert function of ${\mathbb C}^n\setminus F$ identically vanish.
DOI : 10.4064/ap79-1-5
Keywords: proved convex closed set mathbb containing n dimensional complex hyperplane kobayashi metric lempert function mathbb setminus identically vanish

Witold Jarnicki 1 ; Nikolai Nikolov 2

1 Institute of Mathematics Jagiellonian University 30-059 Krak/ow, Poland
2 Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1113 Sofia, Bulgaria
@article{10_4064_ap79_1_5,
     author = {Witold Jarnicki and Nikolai Nikolov},
     title = {Concave domains with trivial biholomorphic invariants},
     journal = {Annales Polonici Mathematici},
     pages = {63--66},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2002},
     doi = {10.4064/ap79-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-5/}
}
TY  - JOUR
AU  - Witold Jarnicki
AU  - Nikolai Nikolov
TI  - Concave domains with trivial biholomorphic invariants
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 63
EP  - 66
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-5/
DO  - 10.4064/ap79-1-5
LA  - en
ID  - 10_4064_ap79_1_5
ER  - 
%0 Journal Article
%A Witold Jarnicki
%A Nikolai Nikolov
%T Concave domains with trivial biholomorphic invariants
%J Annales Polonici Mathematici
%D 2002
%P 63-66
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-5/
%R 10.4064/ap79-1-5
%G en
%F 10_4064_ap79_1_5
Witold Jarnicki; Nikolai Nikolov. Concave domains with trivial biholomorphic invariants. Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 63-66. doi : 10.4064/ap79-1-5. http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-5/

Cité par Sources :