1Institute of Mathematics Jagiellonian University 30-059 Krak/ow, Poland 2Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1113 Sofia, Bulgaria
Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 63-66
It is proved that if $F$ is a convex closed set in ${\mathbb C}^n$, $n\ge 2,$
containing at most one $(n-1)$-dimensional complex hyperplane, then the
Kobayashi metric and the Lempert function of ${\mathbb C}^n\setminus F$ identically vanish.
Keywords:
proved convex closed set mathbb containing n dimensional complex hyperplane kobayashi metric lempert function mathbb setminus identically vanish
Affiliations des auteurs :
Witold Jarnicki 
1
;
Nikolai Nikolov 
2
1
Institute of Mathematics Jagiellonian University 30-059 Krak/ow, Poland
2
Institute of Mathematics and Informatics Bulgarian Academy of Sciences 1113 Sofia, Bulgaria
@article{10_4064_ap79_1_5,
author = {Witold Jarnicki and Nikolai Nikolov},
title = {Concave domains with trivial biholomorphic invariants},
journal = {Annales Polonici Mathematici},
pages = {63--66},
year = {2002},
volume = {79},
number = {1},
doi = {10.4064/ap79-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-5/}
}
TY - JOUR
AU - Witold Jarnicki
AU - Nikolai Nikolov
TI - Concave domains with trivial biholomorphic invariants
JO - Annales Polonici Mathematici
PY - 2002
SP - 63
EP - 66
VL - 79
IS - 1
UR - http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-5/
DO - 10.4064/ap79-1-5
LA - en
ID - 10_4064_ap79_1_5
ER -