Solutions to some nonlinear PDE's in the form of Laplace type integrals
Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 45-62.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A nonlinear equation $P(D)u=\alpha u^{m}$ in 2 variables is considered. A formal solution as a series of Laplace integrals is constructed. It is shown that assuming some properties of ${\rm Char}\hskip1pt P$, one gets the Gevrey class of such solutions. In some cases convergence “at infinity” is proved.
DOI : 10.4064/ap79-1-4
Keywords: nonlinear equation alpha variables considered formal solution series laplace integrals constructed shown assuming properties char hskip gets gevrey class solutions cases convergence infinity proved

Maria E. Pli/s 1

1 Pedagogical University Podchor/a/zych 2 30-084 Krak/ow, Poland
@article{10_4064_ap79_1_4,
     author = {Maria E. Pli/s},
     title = {Solutions to some nonlinear {PDE's} in the form {of
Laplace} type integrals},
     journal = {Annales Polonici Mathematici},
     pages = {45--62},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2002},
     doi = {10.4064/ap79-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-4/}
}
TY  - JOUR
AU  - Maria E. Pli/s
TI  - Solutions to some nonlinear PDE's in the form of
Laplace type integrals
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 45
EP  - 62
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-4/
DO  - 10.4064/ap79-1-4
LA  - en
ID  - 10_4064_ap79_1_4
ER  - 
%0 Journal Article
%A Maria E. Pli/s
%T Solutions to some nonlinear PDE's in the form of
Laplace type integrals
%J Annales Polonici Mathematici
%D 2002
%P 45-62
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-4/
%R 10.4064/ap79-1-4
%G en
%F 10_4064_ap79_1_4
Maria E. Pli/s. Solutions to some nonlinear PDE's in the form of
Laplace type integrals. Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 45-62. doi : 10.4064/ap79-1-4. http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-4/

Cité par Sources :