Invariant measures related with randomly
connected Poisson driven differential equations
Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 31-44
We consider the stochastic differential equation
$$ du(t) = a(u(t), \xi (t))dt + \int _{{\mit \Theta }} \sigma (u(t), \theta )
\, {\cal N}_p(dt, d\theta ) \hskip 1em \hbox {for } t \ge 0\tag*{$ ({1} )$}$$
with the initial condition $u(0) = x_0$. We give sufficient conditions for the existence of an invariant measure for the semigroup
$ \{ P^t \} _{t \ge 0} $ corresponding to (1). We show that the existence of an invariant measure for a Markov operator ${P} $ corresponding to the change of measures from jump to jump implies the existence of an invariant measure for the semigroup $ \{ P^t \} _{t \ge 0} $ describing the evolution of measures along trajectories and vice versa.
Keywords:
consider stochastic differential equation int mit theta sigma theta cal theta hskip hbox tag* initial condition sufficient conditions existence invariant measure semigroup corresponding existence invariant measure markov operator corresponding change measures jump jump implies existence invariant measure semigroup describing evolution measures along trajectories vice versa
Affiliations des auteurs :
Katarzyna Horbacz  1
@article{10_4064_ap79_1_3,
author = {Katarzyna Horbacz},
title = {Invariant measures related with randomly
connected {Poisson} driven differential equations},
journal = {Annales Polonici Mathematici},
pages = {31--44},
year = {2002},
volume = {79},
number = {1},
doi = {10.4064/ap79-1-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-3/}
}
TY - JOUR AU - Katarzyna Horbacz TI - Invariant measures related with randomly connected Poisson driven differential equations JO - Annales Polonici Mathematici PY - 2002 SP - 31 EP - 44 VL - 79 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-3/ DO - 10.4064/ap79-1-3 LA - en ID - 10_4064_ap79_1_3 ER -
Katarzyna Horbacz. Invariant measures related with randomly connected Poisson driven differential equations. Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 31-44. doi: 10.4064/ap79-1-3
Cité par Sources :