Invariant measures related with randomly connected Poisson driven differential equations
Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 31-44.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the stochastic differential equation $$ du(t) = a(u(t), \xi (t))dt + \int _{{\mit \Theta }} \sigma (u(t), \theta ) \, {\cal N}_p(dt, d\theta ) \hskip 1em \hbox {for } t \ge 0\tag*{$ ({1} )$}$$ with the initial condition $u(0) = x_0$. We give sufficient conditions for the existence of an invariant measure for the semigroup $ \{ P^t \} _{t \ge 0} $ corresponding to (1). We show that the existence of an invariant measure for a Markov operator ${P} $ corresponding to the change of measures from jump to jump implies the existence of an invariant measure for the semigroup $ \{ P^t \} _{t \ge 0} $ describing the evolution of measures along trajectories and vice versa.
DOI : 10.4064/ap79-1-3
Keywords: consider stochastic differential equation int mit theta sigma theta cal theta hskip hbox tag* initial condition sufficient conditions existence invariant measure semigroup corresponding existence invariant measure markov operator corresponding change measures jump jump implies existence invariant measure semigroup describing evolution measures along trajectories vice versa

Katarzyna Horbacz 1

1 Institute of Mathematics Silesian University 40-007 Katowice, Poland
@article{10_4064_ap79_1_3,
     author = {Katarzyna Horbacz},
     title = {Invariant measures related with randomly
 connected {Poisson} driven differential equations},
     journal = {Annales Polonici Mathematici},
     pages = {31--44},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2002},
     doi = {10.4064/ap79-1-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-3/}
}
TY  - JOUR
AU  - Katarzyna Horbacz
TI  - Invariant measures related with randomly
 connected Poisson driven differential equations
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 31
EP  - 44
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-3/
DO  - 10.4064/ap79-1-3
LA  - en
ID  - 10_4064_ap79_1_3
ER  - 
%0 Journal Article
%A Katarzyna Horbacz
%T Invariant measures related with randomly
 connected Poisson driven differential equations
%J Annales Polonici Mathematici
%D 2002
%P 31-44
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-3/
%R 10.4064/ap79-1-3
%G en
%F 10_4064_ap79_1_3
Katarzyna Horbacz. Invariant measures related with randomly
 connected Poisson driven differential equations. Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 31-44. doi : 10.4064/ap79-1-3. http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-3/

Cité par Sources :