A multiplicity result for the Schrodinger–Maxwell equations with negative potential
Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 21-30.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the existence of a sequence of radial solutions with negative energy of the Schrödinger–Maxwell equations under the action of a negative potential.
DOI : 10.4064/ap79-1-2
Keywords: prove existence sequence radial solutions negative energy schr dinger maxwell equations under action negative potential

Giuseppe Maria Coclite 1

1 S.I.S.S.A. via Beirut 2-4 Trieste 34014, Italy
@article{10_4064_ap79_1_2,
     author = {Giuseppe Maria Coclite},
     title = {A multiplicity result
  for the {Schrodinger{\textendash}Maxwell} equations
  with negative potential},
     journal = {Annales Polonici Mathematici},
     pages = {21--30},
     publisher = {mathdoc},
     volume = {79},
     number = {1},
     year = {2002},
     doi = {10.4064/ap79-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-2/}
}
TY  - JOUR
AU  - Giuseppe Maria Coclite
TI  - A multiplicity result
  for the Schrodinger–Maxwell equations
  with negative potential
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 21
EP  - 30
VL  - 79
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-2/
DO  - 10.4064/ap79-1-2
LA  - en
ID  - 10_4064_ap79_1_2
ER  - 
%0 Journal Article
%A Giuseppe Maria Coclite
%T A multiplicity result
  for the Schrodinger–Maxwell equations
  with negative potential
%J Annales Polonici Mathematici
%D 2002
%P 21-30
%V 79
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-2/
%R 10.4064/ap79-1-2
%G en
%F 10_4064_ap79_1_2
Giuseppe Maria Coclite. A multiplicity result
  for the Schrodinger–Maxwell equations
  with negative potential. Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 21-30. doi : 10.4064/ap79-1-2. http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-2/

Cité par Sources :