A multiplicity result
for the Schrodinger–Maxwell equations
with negative potential
Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 21-30
We prove the existence of a sequence of radial solutions with negative energy of the Schrödinger–Maxwell equations under the action of a negative potential.
Keywords:
prove existence sequence radial solutions negative energy schr dinger maxwell equations under action negative potential
Affiliations des auteurs :
Giuseppe Maria Coclite  1
@article{10_4064_ap79_1_2,
author = {Giuseppe Maria Coclite},
title = {A multiplicity result
for the {Schrodinger{\textendash}Maxwell} equations
with negative potential},
journal = {Annales Polonici Mathematici},
pages = {21--30},
year = {2002},
volume = {79},
number = {1},
doi = {10.4064/ap79-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-2/}
}
TY - JOUR AU - Giuseppe Maria Coclite TI - A multiplicity result for the Schrodinger–Maxwell equations with negative potential JO - Annales Polonici Mathematici PY - 2002 SP - 21 EP - 30 VL - 79 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap79-1-2/ DO - 10.4064/ap79-1-2 LA - en ID - 10_4064_ap79_1_2 ER -
Giuseppe Maria Coclite. A multiplicity result for the Schrodinger–Maxwell equations with negative potential. Annales Polonici Mathematici, Tome 79 (2002) no. 1, pp. 21-30. doi: 10.4064/ap79-1-2
Cité par Sources :