Nontaut foliations and isoperimetric constants
Annales Polonici Mathematici, Tome 78 (2002) no. 2, pp. 97-110.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study nontaut codimension one foliations on closed Riemannian manifolds. We find an estimate of some constant derived from the mean curvature function of the leaves of a foliation by some isoperimetric constant of the manifold. Moreover, for foliated 2-tori and the 3-dimensional unit sphere, we find the infimum of the former constants for all nontaut codimension one foliations.
DOI : 10.4064/ap78-2-1
Keywords: study nontaut codimension foliations closed riemannian manifolds estimate constant derived mean curvature function leaves foliation isoperimetric constant manifold moreover foliated tori dimensional unit sphere infimum former constants nontaut codimension foliations

Konrad Blachowski 1

1 Faculty of Mathematics University of /Lód/x Banacha 22 90-238 /Lódź, Poland
@article{10_4064_ap78_2_1,
     author = {Konrad Blachowski},
     title = {Nontaut foliations and isoperimetric constants},
     journal = {Annales Polonici Mathematici},
     pages = {97--110},
     publisher = {mathdoc},
     volume = {78},
     number = {2},
     year = {2002},
     doi = {10.4064/ap78-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-1/}
}
TY  - JOUR
AU  - Konrad Blachowski
TI  - Nontaut foliations and isoperimetric constants
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 97
EP  - 110
VL  - 78
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-1/
DO  - 10.4064/ap78-2-1
LA  - en
ID  - 10_4064_ap78_2_1
ER  - 
%0 Journal Article
%A Konrad Blachowski
%T Nontaut foliations and isoperimetric constants
%J Annales Polonici Mathematici
%D 2002
%P 97-110
%V 78
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-1/
%R 10.4064/ap78-2-1
%G en
%F 10_4064_ap78_2_1
Konrad Blachowski. Nontaut foliations and isoperimetric constants. Annales Polonici Mathematici, Tome 78 (2002) no. 2, pp. 97-110. doi : 10.4064/ap78-2-1. http://geodesic.mathdoc.fr/articles/10.4064/ap78-2-1/

Cité par Sources :