Polar quotients and singularities at infinity
of polynomials in two complex variables
Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 49-58
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Using the notion of the maximal polar quotient we characterize the critical values at infinity of polynomials in two complex variables. As an application we give a necessary and sufficient condition for a family of affine plane curves to be equisingular at infinity.
Keywords:
using notion maximal polar quotient characterize critical values infinity polynomials complex variables application necessary sufficient condition family affine plane curves equisingular infinity
Affiliations des auteurs :
Arkadiusz P/loski 1
@article{10_4064_ap78_1_6,
author = {Arkadiusz P/loski},
title = {Polar quotients and singularities at infinity
of polynomials in two complex variables},
journal = {Annales Polonici Mathematici},
pages = {49--58},
year = {2002},
volume = {78},
number = {1},
doi = {10.4064/ap78-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-6/}
}
TY - JOUR AU - Arkadiusz P/loski TI - Polar quotients and singularities at infinity of polynomials in two complex variables JO - Annales Polonici Mathematici PY - 2002 SP - 49 EP - 58 VL - 78 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-6/ DO - 10.4064/ap78-1-6 LA - en ID - 10_4064_ap78_1_6 ER -
Arkadiusz P/loski. Polar quotients and singularities at infinity of polynomials in two complex variables. Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 49-58. doi: 10.4064/ap78-1-6
Cité par Sources :