Polar quotients and singularities at infinity of polynomials in two complex variables
Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 49-58.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Using the notion of the maximal polar quotient we characterize the critical values at infinity of polynomials in two complex variables. As an application we give a necessary and sufficient condition for a family of affine plane curves to be equisingular at infinity.
DOI : 10.4064/ap78-1-6
Keywords: using notion maximal polar quotient characterize critical values infinity polynomials complex variables application necessary sufficient condition family affine plane curves equisingular infinity

Arkadiusz P/loski 1

1 Department of Mathematics Technical University Al. 1000-Lecia Państwa Polskiego 7 25-314 Kielce, Poland
@article{10_4064_ap78_1_6,
     author = {Arkadiusz P/loski},
     title = {Polar quotients and singularities at infinity
of polynomials in two complex variables},
     journal = {Annales Polonici Mathematici},
     pages = {49--58},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2002},
     doi = {10.4064/ap78-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-6/}
}
TY  - JOUR
AU  - Arkadiusz P/loski
TI  - Polar quotients and singularities at infinity
of polynomials in two complex variables
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 49
EP  - 58
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-6/
DO  - 10.4064/ap78-1-6
LA  - en
ID  - 10_4064_ap78_1_6
ER  - 
%0 Journal Article
%A Arkadiusz P/loski
%T Polar quotients and singularities at infinity
of polynomials in two complex variables
%J Annales Polonici Mathematici
%D 2002
%P 49-58
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-6/
%R 10.4064/ap78-1-6
%G en
%F 10_4064_ap78_1_6
Arkadiusz P/loski. Polar quotients and singularities at infinity
of polynomials in two complex variables. Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 49-58. doi : 10.4064/ap78-1-6. http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-6/

Cité par Sources :