Polar quotients and singularities at infinity
of polynomials in two complex variables
Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 49-58
Using the notion of the maximal polar quotient we characterize the critical values at infinity of polynomials in two complex variables. As an application we give a necessary and sufficient condition for a family of affine plane curves to be equisingular at infinity.
Keywords:
using notion maximal polar quotient characterize critical values infinity polynomials complex variables application necessary sufficient condition family affine plane curves equisingular infinity
Affiliations des auteurs :
Arkadiusz P/loski  1
@article{10_4064_ap78_1_6,
author = {Arkadiusz P/loski},
title = {Polar quotients and singularities at infinity
of polynomials in two complex variables},
journal = {Annales Polonici Mathematici},
pages = {49--58},
year = {2002},
volume = {78},
number = {1},
doi = {10.4064/ap78-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-6/}
}
TY - JOUR AU - Arkadiusz P/loski TI - Polar quotients and singularities at infinity of polynomials in two complex variables JO - Annales Polonici Mathematici PY - 2002 SP - 49 EP - 58 VL - 78 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-6/ DO - 10.4064/ap78-1-6 LA - en ID - 10_4064_ap78_1_6 ER -
Arkadiusz P/loski. Polar quotients and singularities at infinity of polynomials in two complex variables. Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 49-58. doi: 10.4064/ap78-1-6
Cité par Sources :