Nonexistence results for the Cauchy problem of some systems of hyperbolic equations
Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 39-47.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We consider the systems of hyperbolic equations $$ \leqalignno{\quad \cases{u_{tt} = {\mit\Delta} (a(t, x)u) + {\mit\Delta} (b(t, x)v) + h(t, x) \vert v \vert^{p},\hskip.5pt\kern-5pt t>0,\, x \in {\mathbb R}^N,\cr v_{tt} = {\mit\Delta} (c(t, x)v) + k(t, x) \vert u \vert^{q},\kern-5pt t>0,\, x \in {\mathbb R}^N,\cr} \kern-5pt{\rm(S1)}\cr \kern-5pt\cases{u_{tt} = {\mit\Delta} (a(t, x)u) + h(t, x) \vert v \vert^{p},\kern-5pt t>0,\, x \in {\mathbb R}^N,\cr v_{tt} = {\mit\Delta} (c(t, x)v) +l(t, x)\vert v \vert^{m} + k(t, x) \vert u \vert^{q},\hskip5.9pt\kern-5pt>0,\, x \in {\mathbb R}^N,\cr}\kern-5pt{\rm(S2)} \cr \kern-5pt\cases{ u_{tt} = {\mit\Delta} (a(t, x)u) + {\mit\Delta} (b(t, x)v) + h(t, x) \vert u \vert^{p},\kern-5pt>0,\, x \in {\mathbb R}^N,\cr v_{tt} = {\mit\Delta} (c(t, x)v) + k(t, x) \vert v \vert^{q},\kern-5pt t>0,\, x \in {\mathbb R}^N,\cr}\kern-5pt{\rm(S3)}\cr} $$ in $(0, \infty) \times{ \mathbb R}^N $ with $ u(0, x)=u_0(x), v(0, x)=v_0(x), u_t(0, x)=u_1(x)$, $ v_t(0, x)=v_1(x)$. We show that, in each case, there exists a bound ${\bf B}$ on $N$ such that for $1 \leq N \leq {\bf B}$ solutions to the systems blow up in finite time.
DOI : 10.4064/ap78-1-5
Keywords: consider systems hyperbolic equations leqalignno quad cases mit delta mit delta vert vert hskip kern mathbb mit delta vert vert kern mathbb kern kern cases mit delta vert vert kern mathbb mit delta vert vert vert vert hskip kern mathbb kern kern cases mit delta mit delta vert vert kern mathbb mit delta vert vert kern mathbb kern infty times mathbb each there exists bound leq leq solutions systems blow finite time

Mokhtar Kirane 1 ; Salim Messaoudi 2

1 Université de Picardie Jules Verne Faculté de Mathématiques et d'Informatique LAMFA UPRES A 6119, 33 rue Saint Leu 80039 Amiens Cedex 1, France
2 Department of Mathematical Sciences King Fahd University of Petroleum and Minerals Dhahran 31261, Saudi Arabia
@article{10_4064_ap78_1_5,
     author = {Mokhtar Kirane and Salim Messaoudi},
     title = {Nonexistence results for the {Cauchy} problem
 of some systems of hyperbolic equations},
     journal = {Annales Polonici Mathematici},
     pages = {39--47},
     publisher = {mathdoc},
     volume = {78},
     number = {1},
     year = {2002},
     doi = {10.4064/ap78-1-5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-5/}
}
TY  - JOUR
AU  - Mokhtar Kirane
AU  - Salim Messaoudi
TI  - Nonexistence results for the Cauchy problem
 of some systems of hyperbolic equations
JO  - Annales Polonici Mathematici
PY  - 2002
SP  - 39
EP  - 47
VL  - 78
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-5/
DO  - 10.4064/ap78-1-5
LA  - en
ID  - 10_4064_ap78_1_5
ER  - 
%0 Journal Article
%A Mokhtar Kirane
%A Salim Messaoudi
%T Nonexistence results for the Cauchy problem
 of some systems of hyperbolic equations
%J Annales Polonici Mathematici
%D 2002
%P 39-47
%V 78
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-5/
%R 10.4064/ap78-1-5
%G en
%F 10_4064_ap78_1_5
Mokhtar Kirane; Salim Messaoudi. Nonexistence results for the Cauchy problem
 of some systems of hyperbolic equations. Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 39-47. doi : 10.4064/ap78-1-5. http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-5/

Cité par Sources :