Nonexistence results for the Cauchy problem
of some systems of hyperbolic equations
Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 39-47
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the systems of hyperbolic equations
$$
\leqalignno{\quad
\cases{u_{tt} = {\mit\Delta} (a(t, x)u) + {\mit\Delta} (b(t, x)v)
+ h(t, x) \vert v \vert^{p},\hskip.5pt\kern-5pt
t>0,\, x \in {\mathbb R}^N,\cr
v_{tt} = {\mit\Delta} (c(t, x)v) + k(t, x) \vert u \vert^{q},\kern-5pt
t>0,\, x \in {\mathbb R}^N,\cr}
\kern-5pt{\rm(S1)}\cr
\kern-5pt\cases{u_{tt} = {\mit\Delta} (a(t, x)u) + h(t, x) \vert v \vert^{p},\kern-5pt
t>0,\, x \in {\mathbb R}^N,\cr
v_{tt} = {\mit\Delta} (c(t, x)v) +l(t, x)\vert v \vert^{m}
+ k(t, x) \vert u \vert^{q},\hskip5.9pt\kern-5pt>0,\, x \in {\mathbb R}^N,\cr}\kern-5pt{\rm(S2)}
\cr
\kern-5pt\cases{
u_{tt} = {\mit\Delta} (a(t, x)u) + {\mit\Delta} (b(t, x)v)
+ h(t, x) \vert u \vert^{p},\kern-5pt>0,\,
x \in {\mathbb R}^N,\cr
v_{tt} = {\mit\Delta} (c(t, x)v) + k(t, x) \vert v \vert^{q},\kern-5pt
t>0,\, x \in {\mathbb R}^N,\cr}\kern-5pt{\rm(S3)}\cr}
$$
in $(0, \infty) \times{ \mathbb R}^N $ with
$ u(0, x)=u_0(x), v(0, x)=v_0(x), u_t(0, x)=u_1(x)$, $ v_t(0, x)=v_1(x)$.
We show that, in each case, there exists a bound ${\bf B}$ on
$N$ such that for
$1 \leq N \leq {\bf B}$ solutions to the systems
blow up in finite time.
Keywords:
consider systems hyperbolic equations leqalignno quad cases mit delta mit delta vert vert hskip kern mathbb mit delta vert vert kern mathbb kern kern cases mit delta vert vert kern mathbb mit delta vert vert vert vert hskip kern mathbb kern kern cases mit delta mit delta vert vert kern mathbb mit delta vert vert kern mathbb kern infty times mathbb each there exists bound leq leq solutions systems blow finite time
Affiliations des auteurs :
Mokhtar Kirane 1 ; Salim Messaoudi 2
@article{10_4064_ap78_1_5,
author = {Mokhtar Kirane and Salim Messaoudi},
title = {Nonexistence results for the {Cauchy} problem
of some systems of hyperbolic equations},
journal = {Annales Polonici Mathematici},
pages = {39--47},
year = {2002},
volume = {78},
number = {1},
doi = {10.4064/ap78-1-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-5/}
}
TY - JOUR AU - Mokhtar Kirane AU - Salim Messaoudi TI - Nonexistence results for the Cauchy problem of some systems of hyperbolic equations JO - Annales Polonici Mathematici PY - 2002 SP - 39 EP - 47 VL - 78 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-5/ DO - 10.4064/ap78-1-5 LA - en ID - 10_4064_ap78_1_5 ER -
%0 Journal Article %A Mokhtar Kirane %A Salim Messaoudi %T Nonexistence results for the Cauchy problem of some systems of hyperbolic equations %J Annales Polonici Mathematici %D 2002 %P 39-47 %V 78 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-5/ %R 10.4064/ap78-1-5 %G en %F 10_4064_ap78_1_5
Mokhtar Kirane; Salim Messaoudi. Nonexistence results for the Cauchy problem of some systems of hyperbolic equations. Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 39-47. doi: 10.4064/ap78-1-5
Cité par Sources :