Width asymptotics for
a pair of Reinhardt domains
Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 31-38
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For complete Reinhardt pairs “compact set – domain”
$K \subset D$ in ${\mathbb C}^n$, we prove
Zahariuta's conjecture about the exact asymptotics
$$
\ln d_s(A_K^D) \sim -\Bigl(\frac{n!\,s}{\tau(K,D)}
\Bigr)^{1//n},\quad\ s\to\infty,
$$
for the Kolmogorov widths $d_s(A_K^D)$ of the compact
set in $C(K)$ consisting of all
analytic functions in $D$ with moduli not exceeding $1$ in $D$,
$\tau(K,D)$ being the condenser pluricapacity of $K$ with respect to $D$.
Keywords:
complete reinhardt pairs compact set domain subset mathbb prove zahariutas conjecture about exact asymptotics k sim bigl frac tau bigr quad infty kolmogorov widths k compact set consisting analytic functions moduli exceeding tau being condenser pluricapacity respect
Affiliations des auteurs :
A. Aytuna 1 ; A. Rashkovskii 2 ; V. Zahariuta 3
@article{10_4064_ap78_1_4,
author = {A. Aytuna and A. Rashkovskii and V. Zahariuta},
title = {Width asymptotics for
a pair of {Reinhardt} domains},
journal = {Annales Polonici Mathematici},
pages = {31--38},
publisher = {mathdoc},
volume = {78},
number = {1},
year = {2002},
doi = {10.4064/ap78-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-4/}
}
TY - JOUR AU - A. Aytuna AU - A. Rashkovskii AU - V. Zahariuta TI - Width asymptotics for a pair of Reinhardt domains JO - Annales Polonici Mathematici PY - 2002 SP - 31 EP - 38 VL - 78 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/ap78-1-4/ DO - 10.4064/ap78-1-4 LA - en ID - 10_4064_ap78_1_4 ER -
A. Aytuna; A. Rashkovskii; V. Zahariuta. Width asymptotics for a pair of Reinhardt domains. Annales Polonici Mathematici, Tome 78 (2002) no. 1, pp. 31-38. doi: 10.4064/ap78-1-4
Cité par Sources :