Homogeneous Riemannian manifolds
with generic Ricci tensor
Annales Polonici Mathematici, Tome 77 (2001) no. 3, pp. 271-287
We describe homogeneous manifolds with generic Ricci tensor.
We also prove that if ${\frak g}$ is a 4-dimensional unimodular
Lie algebra such that dim$[{\frak g},{\frak g}]\le 2$ then every
left-invariant metric on the Lie group $G$ with Lie algebra
${\frak g}$ admits two mutually opposite compatible
left-invariant almost Kähler structures.
Keywords:
describe homogeneous manifolds generic ricci tensor prove frak dimensional unimodular lie algebra dim frak frak every left invariant metric lie group lie algebra frak admits mutually opposite compatible left invariant almost hler structures
Affiliations des auteurs :
W/lodzimierz Jelonek  1
@article{10_4064_ap77_3_6,
author = {W/lodzimierz Jelonek},
title = {Homogeneous {Riemannian} manifolds
with generic {Ricci} tensor},
journal = {Annales Polonici Mathematici},
pages = {271--287},
year = {2001},
volume = {77},
number = {3},
doi = {10.4064/ap77-3-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/ap77-3-6/}
}
W/lodzimierz Jelonek. Homogeneous Riemannian manifolds with generic Ricci tensor. Annales Polonici Mathematici, Tome 77 (2001) no. 3, pp. 271-287. doi: 10.4064/ap77-3-6
Cité par Sources :